文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Naked eye detection of hydrogen peroxide via curcumin functionalised gold nanoparticles.

作者信息

Sudhesh Priya, Sruthi S, Jose Mariya, Vyshnavi K, Aiswarya P, Manu R

机构信息

N.S.S. College Nemmara, Palakkad, Kerala, India.

Mercy College, Palakkad, Kerala, India.

出版信息

Sci Rep. 2025 May 15;15(1):16896. doi: 10.1038/s41598-025-01613-y.


DOI:10.1038/s41598-025-01613-y
PMID:40374875
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12081685/
Abstract

Nanozymes are a class of inorganic nanomaterials that mimic enzyme activity. Their high durability and strong catalytic performance make them effective surrogates for natural enzymes. In this study, we synthesized curcumin-stabilized gold nanoparticles, which were employed for the colorimetric detection of hydrogen peroxide (H₂O₂) using the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Steady-state kinetic parameters were determined by varying the substrate concentrations. When H₂O₂ was used as the substrate, the Michaelis-Menten constant (Km) and the maximum reaction rate (Vmax) were found to be 3.10 × 10⁻³ M and 9.27 × 10⁻⁷ M/s, respectively. For TMB, the Km and Vmax values were 0.30 × 10⁻³ M and 1.80 × 10⁻⁷ M/s, respectively. The lower Km value for H₂O₂ indicates a higher affinity of the nanozyme for this substrate. The electron transfer ability of the nanozyme was further confirmed by cyclic voltammetry and impedence analysis, performed by immobilizing the gold nanoparticles on the surface of an electrode. Thus, this study presents a dual-mode method for the detection of H₂O₂ using curcumin-stabilized gold nanoparticles.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/08ca52d4a890/41598_2025_1613_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/7fc2d4933ce4/41598_2025_1613_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/0f020c52f69c/41598_2025_1613_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/2136d348ba0a/41598_2025_1613_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/6ce547a7b413/41598_2025_1613_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/48fee7a07748/41598_2025_1613_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/ad2861c59d8b/41598_2025_1613_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/c5f3ab799f89/41598_2025_1613_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/6ffcb6895e23/41598_2025_1613_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/3908659317d5/41598_2025_1613_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/a487b6df51c8/41598_2025_1613_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/4a37a0bbbee0/41598_2025_1613_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/ce5f28450fc6/41598_2025_1613_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/08ca52d4a890/41598_2025_1613_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/7fc2d4933ce4/41598_2025_1613_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/0f020c52f69c/41598_2025_1613_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/2136d348ba0a/41598_2025_1613_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/6ce547a7b413/41598_2025_1613_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/48fee7a07748/41598_2025_1613_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/ad2861c59d8b/41598_2025_1613_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/c5f3ab799f89/41598_2025_1613_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/6ffcb6895e23/41598_2025_1613_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/3908659317d5/41598_2025_1613_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/a487b6df51c8/41598_2025_1613_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/4a37a0bbbee0/41598_2025_1613_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/ce5f28450fc6/41598_2025_1613_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/788c/12081685/08ca52d4a890/41598_2025_1613_Fig13_HTML.jpg

相似文献

[1]
Naked eye detection of hydrogen peroxide via curcumin functionalised gold nanoparticles.

Sci Rep. 2025-5-15

[2]
Highly Sensitive and Selective Colorimetric Detection of Methylmercury Based on DNA Functionalized Gold Nanoparticles.

Sensors (Basel). 2018-8-15

[3]
Gold nanozyme as an excellent co-catalyst for enhancing the performance of a colorimetric and photothermal bioassay.

Anal Chim Acta. 2020-8-15

[4]
Nanomagnet-Silica Nanoparticles Decorated with Au@Pd for Enhanced Peroxidase-Like Activity and Colorimetric Glucose Sensing.

ACS Appl Mater Interfaces. 2020-1-3

[5]
A SERS and colorimetric dual-mode biosensor based on stimulus-responsive DNA/MOF-bound bimetallic nanozyme for the ultrasensitive detection of chloramphenicol in food.

Mikrochim Acta. 2025-1-9

[6]
Colorimetric Detection of Dopamine Based on Peroxidase-like Activity of β-CD Functionalized AuNPs.

Molecules. 2025-1-20

[7]
Colorimetric determination of Pb ions based on surface leaching of Au@Pt nanoparticles as peroxidase mimic.

Mikrochim Acta. 2020-4-1

[8]
Importance of the surface chemistry of nanoparticles on peroxidase-like activity.

Biochem Biophys Res Commun. 2017-9-9

[9]
Enhanced glucose detection using dendrimer encapsulated gold nanoparticles benefiting from their zwitterionic surface.

J Biomater Sci Polym Ed. 2018-11-24

[10]
Colorimetric determination of lead(II) or mercury(II) based on target induced switching of the enzyme-like activity of metallothionein-stabilized copper nanoclusters.

Mikrochim Acta. 2019-3-19

本文引用的文献

[1]
Bimetallic Cu-Zn Zeolitic Imidazolate Frameworks as Peroxidase Mimics for the Detection of Hydrogen Peroxide: Electrochemical and Spectrophotometric Evaluation.

ACS Omega. 2023-10-15

[2]
Thin silica shell on AgPO nanoparticles augments stability and photocatalytic reusability.

RSC Adv. 2023-10-24

[3]
Enhanced peroxidase-like activity of MOF nanozymes by co-catalysis for colorimetric detection of cholesterol.

J Mater Chem B. 2023-8-24

[4]
Nanozyme for tumor therapy: Surface modification matters.

Exploration (Beijing). 2021-9-1

[5]
Exploration of nanozymes in viral diagnosis and therapy.

Exploration (Beijing). 2022-1-25

[6]
Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of HO and glucose.

J Mater Chem B. 2018-12-13

[7]
Nanozyme-Modified Metal-Organic Frameworks with Multienzymes Activity as Biomimetic Catalysts and Electrocatalytic Interfaces.

ACS Appl Mater Interfaces. 2020-4-15

[8]
Nanozyme: new horizons for responsive biomedical applications.

Chem Soc Rev. 2019-7-15

[9]
Nanomaterials Exhibiting Enzyme-Like Properties (Nanozymes): Current Advances and Future Perspectives.

Front Chem. 2019-2-5

[10]
Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II).

Chem Soc Rev. 2019-2-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索