Department of Marine Sciences, University of Georgia, Athens,GA 30602-3636, USA.
J Contam Hydrol. 2010 Mar 1;112(1-4):130-40. doi: 10.1016/j.jconhyd.2009.12.002. Epub 2009 Dec 21.
Prediction of the fate and environmental impacts of groundwater contaminants requires the identification of relevant biogeochemical processes and necessitates the macroscopic representation of microbial activity occurring at the microscale. Using a well-studied sandy aquifer environment, we evaluate the importance of pore distribution on organic matter respiration in a porous medium environment by performing spatially explicit simulations of microbial metabolism at the sub-millimeter scale. Model results using an idealized porous medium under non-biofilm forming conditions indicate that while some heterogeneity is observed for flow rates, distributions of microbes and dissolved organic substrates remain relatively homogenous at the grain scale. At the macroscale in the same environment, we assess the impact of a comprehensive reaction network description for a phenolic contaminant plume, and compare the findings to a setting describing organic matter breakdown in a coastal marine sediment. This comparison reveals the importance of reactions recycling reduced metabolites at redox interfaces, leading to a competition for oxidants. When the spatio-temporal dynamics of microbial groups are accounted for, our simulations show the importance of reaction energetics and nutrient limitations such as microbial nitrogen demands.
预测地下水污染物的命运和环境影响需要识别相关的生物地球化学过程,并需要在微观尺度上宏观表示微生物活性。本研究使用经过充分研究的沙质含水层环境,通过在亚毫米尺度上对微生物代谢进行空间显式模拟,评估孔隙分布对多孔介质环境中有机质呼吸的重要性。在非生物膜形成条件下使用理想化多孔介质的模型结果表明,尽管对于流速观察到一些异质性,但微生物和溶解有机底物的分布在颗粒尺度上仍然相对均匀。在相同环境中的宏观尺度上,我们评估了综合反应网络描述对酚类污染物羽流的影响,并将研究结果与描述沿海海洋沉积物中有机质分解的设置进行比较。这一比较揭示了在氧化还原界面上回收还原代谢物的反应的重要性,导致氧化剂的竞争。当考虑微生物群体的时空动态时,我们的模拟表明反应能量学和营养限制(如微生物氮需求)的重要性。