Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6.
Hum Mol Genet. 2010 Apr 15;19(8):1468-78. doi: 10.1093/hmg/ddq021. Epub 2010 Jan 22.
Spinal muscular atrophy (SMA) is an inherited disease resulting in the highest mortality of children under the age of two. SMA is caused by mutations or deletions in the survival motor neuron 1 (SMN1) gene, leading to aberrant neuromuscular junction (NMJ) development and the loss of spinal cord alpha-motor neurons. Here, we show that Smn depletion leads to increased activation of RhoA, a major regulator of actin dynamics, in the spinal cord of an intermediate SMA mouse model. Treating these mice with Y-27632, which inhibits ROCK, a direct downstream effector of RhoA, dramatically improves their survival. This lifespan rescue is independent of Smn expression and is accompanied by an improvement in the maturation of the NMJs and an increase in muscle fiber size in the SMA mice. Our study presents evidence linking disruption of actin cytoskeletal dynamics to SMA pathogenesis and, for the first time, identifies RhoA effectors as viable targets for therapeutic intervention in the disease.
脊髓性肌萎缩症(SMA)是一种遗传性疾病,导致两岁以下儿童死亡率最高。SMA 是由生存运动神经元 1(SMN1)基因的突变或缺失引起的,导致异常的神经肌肉接头(NMJ)发育和脊髓α运动神经元的丧失。在这里,我们表明 Smn 耗竭导致中间 SMA 小鼠模型脊髓中 RhoA 的活性增加,RhoA 是肌动蛋白动力学的主要调节剂。用 Y-27632 治疗这些小鼠,Y-27632 抑制 RhoA 的直接下游效应物 ROCK,可显著提高它们的存活率。这种寿命挽救与 Smn 表达无关,并伴随着 NMJ 成熟度的改善和 SMA 小鼠肌肉纤维大小的增加。我们的研究提供了证据,将肌动蛋白细胞骨架动力学的破坏与 SMA 的发病机制联系起来,并且首次确定 RhoA 效应物是该疾病治疗干预的可行靶点。