Suppr超能文献

使用电化学阻抗谱对碳纳米纤维电极阵列进行特性描述:电极尺寸缩小的影响。

Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: effect of scaling down electrode size.

机构信息

NASA Ames Research Center, Moffett Field, CA 94035, USA.

出版信息

ACS Nano. 2010 Feb 23;4(2):955-61. doi: 10.1021/nn901583u.

Abstract

We report here how the electrochemical impedance spectra change as (i) electrode size is reduced to nanometer scale and (ii) spacing between vertically aligned carbon nanofiber (VACNF) electrodes is varied. To study this, we used three types of electrodes: standard microdisks (100 microm Pt, 10 microm Au, and 7 microm glassy carbon), randomly grown (RG) VACNFs where spacing between electrodes is not fixed, and electron beam patterned VACNF nanoelectrode arrays (pNEAs) where electrode spacing is fixed at 1 microm. As the size of the microdisk electrode is reduced, the spectrum changed from a straight line to a semicircle accompanied by huge noise. Although a semicircle spectrum can directly indicate the electron transfer resistance (R(ct)) and thus is useful for biosensing applications, the noise from electrodes, particularly from those with diameters < or =10 microm, limits sensitivity. In the case of VACNFs, the electrode spacing controls the type of spectrum, that is, a straight line for RG VACNFs and a semicircle for pNEAs. In contrast to microdisks, pNEAs showed almost insignificant noise even at small perturbations (10 mV). Second, only pNEAs showed linearity as the amplitude of the sinusoidal signal was increased from 10 to 100 mV. The ability to apply large amplitudes reduces the stochastic errors, provides high stability, and improves signal-to-noise (S/N) ratio. This new class of nanoelectrochemical system using carbon pNEAs offers unique properties such as semicircle spectra that fit into simple circuits, high S/N ratio, linearity, and tailor-made spectra for specific applications by controlling electrode size, spacing, and array size.

摘要

我们在此报告电化学阻抗谱如何随着(i)电极尺寸减小到纳米尺度和(ii)垂直排列的碳纤维(VACNF)电极之间的间距变化而变化。为了研究这一点,我们使用了三种类型的电极:标准微盘(100 微米 Pt、10 微米 Au 和 7 微米玻璃碳)、电极间距不固定的随机生长(RG)VACNF 和电极间距固定在 1 微米的电子束图案化 VACNF 纳米电极阵列(pNEA)。随着微盘电极尺寸的减小,谱从直线变为半圆,并伴有巨大的噪声。虽然半圆谱可以直接指示电子转移电阻(R(ct)),因此对于生物传感应用很有用,但来自电极的噪声,特别是直径<或=10 微米的电极的噪声,限制了灵敏度。对于 VACNF,电极间距控制谱的类型,即 RG VACNF 的直线和 pNEA 的半圆。与微盘相比,即使在小扰动(10 mV)下,pNEA 的噪声也几乎可以忽略不计。其次,只有 pNEA 在正弦信号幅度从 10 增加到 100 mV 时表现出线性。能够施加大振幅可以减少随机误差,提供高稳定性,并提高信噪比(S/N)。使用碳 pNEA 的这种新型纳米电化学系统提供了独特的特性,例如适合简单电路的半圆谱、高 S/N 比、线性和通过控制电极尺寸、间距和阵列尺寸为特定应用定制谱的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验