Suppr超能文献

直流等离子体在透明绝缘衬底上合成碳纳米纤维的离子通量对其取向排列的作用。

Role of ion flux on alignment of carbon nanofibers synthesized by DC plasma on transparent insulating substrates.

机构信息

Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

ACS Appl Mater Interfaces. 2011 Sep;3(9):3501-7. doi: 10.1021/am200722c. Epub 2011 Aug 9.

Abstract

A key factor to the implementation of devices with vertically aligned carbon nanofibers (VACNFs) is fundamental understanding of how to control fluctuations in the growth direction of the fibers. Here we demonstrate synthesis of VACNF on transparent and insulating substrates by continuous direct current (DC) plasma for realization of cellular interface suitable for transmission optical microscopy. To maintain continuous glow discharge above the substrate, a metal grid electrode layer (Cr) was deposited over silica with windows of exposed silica ranging in size from 200 μm to 1 mm. This electrode geometry allows for synthesis of VACNFs even within an insulating window. This observation and the observed trends in the alignment of nanofibers in the vicinity of grid electrodes have indicated that the alignment does not correspond to the direction of the electric field at the substrate level, contrary to previously proposed alignment mechanism. Computational modeling of the plasma with this grid cathode geometry has shown that nanofiber alignment trends follow calculated ion flux direction rather than electrical field. The new proposed alignment mechanism is that ion sputtering of the carbon film on a catalyst particle defines the growth direction of the nanofibers. With this development, fiber growth direction can be better manipulated through changes in ionic flux direction, opening the possibility for growth of nanofibers on substrates with unique geometries.

摘要

实现垂直排列碳纳米纤维(VACNF)器件的一个关键因素是深入了解如何控制纤维生长方向的波动。在这里,我们通过连续直流(DC)等离子体在透明和绝缘衬底上展示了 VACNF 的合成,以实现适合传输光学显微镜的细胞接口。为了在衬底上方维持连续辉光放电,在具有暴露二氧化硅窗口的二氧化硅上沉积了一层金属网格电极层(Cr),暴露的二氧化硅窗口的尺寸范围为 200μm 至 1mm。这种电极几何形状允许即使在绝缘窗口内也能合成 VACNF。这一观察结果以及在网格电极附近观察到的纳米纤维排列趋势表明,与先前提出的排列机制相反,排列与基底水平的电场方向不一致。对具有这种网格阴极几何形状的等离子体进行的计算建模表明,纳米纤维排列趋势遵循计算的离子通量方向,而不是电场。新提出的排列机制是,催化剂颗粒上的碳膜的离子溅射定义了纳米纤维的生长方向。通过这种发展,可以通过改变离子通量方向更好地控制纤维的生长方向,为在具有独特几何形状的衬底上生长纳米纤维开辟了可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验