Suppr超能文献

使用 FACTS 溶剂化模型进行蛋白质-配体对接计算。在 EADock 中的应用。

Use of the FACTS solvation model for protein-ligand docking calculations. Application to EADock.

机构信息

Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, CH-1015 Lausanne, Switzerland.

出版信息

J Mol Recognit. 2010 Sep-Oct;23(5):457-61. doi: 10.1002/jmr.1012.

Abstract

Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.

摘要

在过去的十年中,蛋白质-配体对接取得了重要进展,已成为药物开发的有力工具,为虚拟高通量筛选和基于结构的虚拟配体设计开辟了道路。尽管取得了令人瞩目的成就,但最近的出版物表明,对接问题远未得到解决,仍需要进一步发展,以实现高成功率和准确性。引入对结合时溶剂效应的准确描述被认为是实现这一目标的关键。特别是,EADock 使用广义 Born 分子体积 2(GBMV2)溶剂模型,该模型已被证明能够准确地再现通过求解泊松方程计算得出的去溶剂化能。在这里,评估了使用 EADock 对接程序在小分子对接计算中作为隐式溶剂模型的快速分析连续溶剂处理(FACTS)的实现。我们的结果强烈支持将 FACTS 用于对接。EADock/FACTS 和 EADock/GBMV2 的成功率相似,即局部对接约为 75%,盲目对接约为 65%。然而,这些结果的计算成本要低得多:FACTS 在计算总静电能方面比 GBMV2 快 10 倍,并使 EADock 的速度提高了 4 倍。这项研究还支持 EADock 发展策略,该策略依赖 CHARMM 包进行能量计算,这使得在分子建模领域的最新发展中能够进行直接的实施和测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验