Suppr超能文献

用于对接的吸引腔。用平滑的吸引势场取代蛋白质粗糙的能量势场。

Attracting cavities for docking. Replacing the rough energy landscape of the protein by a smooth attracting landscape.

作者信息

Zoete Vincent, Schuepbach Thierry, Bovigny Christophe, Chaskar Prasad, Daina Antoine, Röhrig Ute F, Michielin Olivier

机构信息

Bâtiment Génopode, SIB Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland.

Ludwig Institute for Cancer Research, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.

出版信息

J Comput Chem. 2016 Feb 5;37(4):437-47. doi: 10.1002/jcc.24249. Epub 2015 Nov 12.

Abstract

Molecular docking is a computational approach for predicting the most probable position of ligands in the binding sites of macromolecules and constitutes the cornerstone of structure-based computer-aided drug design. Here, we present a new algorithm called Attracting Cavities that allows molecular docking to be performed by simple energy minimizations only. The approach consists in transiently replacing the rough potential energy hypersurface of the protein by a smooth attracting potential driving the ligands into protein cavities. The actual protein energy landscape is reintroduced in a second step to refine the ligand position. The scoring function of Attracting Cavities is based on the CHARMM force field and the FACTS solvation model. The approach was tested on the 85 experimental ligand-protein structures included in the Astex diverse set and achieved a success rate of 80% in reproducing the experimental binding mode starting from a completely randomized ligand conformer. The algorithm thus compares favorably with current state-of-the-art docking programs.

摘要

分子对接是一种用于预测配体在大分子结合位点中最可能位置的计算方法,是基于结构的计算机辅助药物设计的基石。在此,我们提出一种名为“吸引腔”的新算法,该算法仅通过简单的能量最小化就能进行分子对接。该方法包括用一个平滑的吸引势暂时取代蛋白质粗糙的势能超曲面,将配体驱动到蛋白质腔中。在第二步中重新引入实际的蛋白质能量景观以优化配体位置。“吸引腔”的评分函数基于CHARMM力场和FACTS溶剂化模型。该方法在Astex多样集包含的85个实验性配体 - 蛋白质结构上进行了测试,从完全随机的配体构象开始重现实验结合模式的成功率达到了80%。因此,该算法与当前最先进的对接程序相比具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/540e/4738475/4e0959234bd4/JCC-37-437-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验