Suppr超能文献

基于肽的靶向分子成像探针。

Peptide-based probes for targeted molecular imaging.

机构信息

Laboratory for Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 31 Center Drive, Suite 1C14, Bethesda, Maryland 20892-2281, USA.

出版信息

Biochemistry. 2010 Feb 23;49(7):1364-76. doi: 10.1021/bi901135x.

Abstract

Targeted molecular imaging techniques have become indispensable tools in modern diagnostics because they provide accurate and specific diagnosis of disease information. Conventional nonspecific contrast agents suffer from low targeting efficiency; thus, the use of molecularly targeted imaging probes is needed depending on different imaging modalities. Although recent technologies have yielded various strategies for designing smart probes, utilization of peptide-based probes has been most successful. Phage display technology and combinatorial peptide chemistry have profoundly impacted the pool of available targeting peptides for the efficient and specific delivery of imaging labels. To date, selected peptides that target a variety of disease-related receptors and biomarkers are in place. These targeting peptides can be coupled with the appropriate imaging moieties or nanoplatforms on demand with the help of sophisticated bioconjugation or radiolabeling techniques. This review article examines the current trends in peptide-based imaging probes developed for in vivo applications. We discuss the advantage of and challenges in developing peptide-based probes and summarize current systems with respect to their unique design strategies and applications.

摘要

靶向分子影像学技术已成为现代诊断学不可或缺的工具,因为它们能够提供疾病信息的准确和特异性诊断。传统的非特异性对比剂靶向效率低;因此,需要根据不同的成像方式使用分子靶向成像探针。尽管最近的技术已经产生了各种设计智能探针的策略,但基于肽的探针的应用最为成功。噬菌体展示技术和组合肽化学深刻地影响了可用的靶向肽库,以实现成像标签的高效和特异性传递。迄今为止,已经有多种针对各种与疾病相关的受体和生物标志物的靶向肽。这些靶向肽可以通过复杂的生物共轭或放射性标记技术,根据需要与适当的成像部分或纳米平台偶联。本文综述了用于体内应用的基于肽的成像探针的最新研究进展。我们讨论了开发基于肽的探针的优势和挑战,并根据其独特的设计策略和应用对现有系统进行了总结。

相似文献

1
Peptide-based probes for targeted molecular imaging.
Biochemistry. 2010 Feb 23;49(7):1364-76. doi: 10.1021/bi901135x.
2
Target-specific delivery of peptide-based probes for PET imaging.
Adv Drug Deliv Rev. 2010 Aug 30;62(11):1005-22. doi: 10.1016/j.addr.2010.09.004. Epub 2010 Sep 17.
3
Tumor-targeting peptides from combinatorial libraries.
Adv Drug Deliv Rev. 2017 Feb;110-111:13-37. doi: 10.1016/j.addr.2016.05.009. Epub 2016 May 19.
4
From combinatorial chemistry to cancer-targeting peptides.
Mol Pharm. 2007 Sep-Oct;4(5):631-51. doi: 10.1021/mp700073y. Epub 2007 Sep 20.
5
Peptides for in vivo target-specific cancer imaging.
Mini Rev Med Chem. 2010 Jan;10(1):87-97. doi: 10.2174/138955710791112596.
6
Peptide-receptor ligands and multivalent approach.
Anticancer Agents Med Chem. 2012 Jun;12(5):416-27. doi: 10.2174/187152012800617849.
7
Nuclear medicine applications in molecular imaging: 2007 update.
Q J Nucl Med Mol Imaging. 2007 Jun;51(2):99-110.
8
The use and importance of liposomes in positron emission tomography.
Drug Deliv. 2012 Jan;19(1):68-80. doi: 10.3109/10717544.2011.635721.
9
Radiolabeled peptide-receptor ligands in tumor imaging.
Expert Opin Med Diagn. 2011 Sep;5(5):411-24. doi: 10.1517/17530059.2011.592829. Epub 2011 Jun 15.
10
Combinatorial discovery of tumor targeting peptides using phage display.
J Cell Biochem. 2003 Oct 15;90(3):509-17. doi: 10.1002/jcb.10634.

引用本文的文献

1
Breaking the oncogenic alliance: advances in disrupting the MTDH-SND1 complex for cancer therapy.
RSC Adv. 2025 Aug 26;15(37):30165-30188. doi: 10.1039/d5ra04310g. eCollection 2025 Aug 22.
2
Enhancing the Biological Functionality of Hydrogels Using Self-Assembling Peptides.
Biomimetics (Basel). 2025 Jul 4;10(7):442. doi: 10.3390/biomimetics10070442.
3
Molecular imaging using (nano)probes: cutting-edge developments and clinical challenges in diagnostics.
RSC Adv. 2025 Jul 14;15(30):24696-24725. doi: 10.1039/d5ra03927d. eCollection 2025 Jul 10.
4
Leading designs of peptide-based chemical probes for medical imaging- the dawn of precision diagnostics.
Future Med Chem. 2025 Apr;17(8):861-863. doi: 10.1080/17568919.2025.2479415. Epub 2025 Mar 12.
5
Molecular imaging of viral pathogenesis and opportunities for the future.
Npj Imaging. 2025;3(1):3. doi: 10.1038/s44303-024-00056-w. Epub 2025 Jan 24.
6
NADPH-Independent Fluorescent Probe for Live-Cell Imaging of Heme Oxygenase-1.
ACS Sens. 2025 Jan 24;10(1):499-506. doi: 10.1021/acssensors.4c02978. Epub 2025 Jan 2.

本文引用的文献

1
Are quantum dots ready for in vivo imaging in human subjects?
Nanoscale Res Lett. 2007 Jun;2(6):265-281. doi: 10.1007/s11671-007-9061-9.
2
Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9391-6. doi: 10.1073/pnas.0812884106. Epub 2009 May 20.
3
Dual-modality probes for in vivo molecular imaging.
Mol Imaging. 2009 Mar-Apr;8(2):87-100.
4
Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results.
Crit Rev Oncol Hematol. 2009 Sep;71(3):199-213. doi: 10.1016/j.critrevonc.2009.02.009. Epub 2009 Apr 9.
5
Iron oxide nanoparticle platform for biomedical applications.
Curr Med Chem. 2009;16(10):1278-94. doi: 10.2174/092986709787846604.
8
Magnetic tagging of therapeutic cells for MRI.
J Nucl Med. 2009 Feb;50(2):171-4. doi: 10.2967/jnumed.108.053546. Epub 2009 Jan 21.
9
(68)Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin alphavbeta3 PET imaging.
Eur J Nucl Med Mol Imaging. 2009 Jun;36(6):947-57. doi: 10.1007/s00259-008-1045-1. Epub 2009 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验