Aarhus University, Faculty of Agricultural Sciences, Dept of Genetics and Biotechnology, Blichers Allé 20, PO BOX 50, DK-8830 Tjele, Denmark.
Genet Sel Evol. 2010 Jan 27;42(1):2. doi: 10.1186/1297-9686-42-2.
The use of genomic selection in breeding programs may increase the rate of genetic improvement, reduce the generation time, and provide higher accuracy of estimated breeding values (EBVs). A number of different methods have been developed for genomic prediction of breeding values, but many of them assume that all animals have been genotyped. In practice, not all animals are genotyped, and the methods have to be adapted to this situation.
In this paper we provide an extension of a linear mixed model method for genomic prediction to the situation with non-genotyped animals. The model specifies that a breeding value is the sum of a genomic and a polygenic genetic random effect, where genomic genetic random effects are correlated with a genomic relationship matrix constructed from markers and the polygenic genetic random effects are correlated with the usual relationship matrix. The extension of the model to non-genotyped animals is made by using the pedigree to derive an extension of the genomic relationship matrix to non-genotyped animals. As a result, in the extended model the estimated breeding values are obtained by blending the information used to compute traditional EBVs and the information used to compute purely genomic EBVs. Parameters in the model are estimated using average information REML and estimated breeding values are best linear unbiased predictions (BLUPs). The method is illustrated using a simulated data set.
The extension of the method to non-genotyped animals presented in this paper makes it possible to integrate all the genomic, pedigree and phenotype information into a one-step procedure for genomic prediction. Such a one-step procedure results in more accurate estimated breeding values and has the potential to become the standard tool for genomic prediction of breeding values in future practical evaluations in pig and cattle breeding.
在育种计划中使用基因组选择可以提高遗传改良的速度,减少世代间隔,并提供更高的估计育种值(EBV)的准确性。已经开发出许多不同的方法来进行基因组预测,但其中许多方法都假设所有动物都已经进行了基因分型。实际上,并非所有动物都进行了基因分型,因此需要对这些方法进行调整。
本文为基于线性混合模型的基因组预测方法提供了一种扩展,以适应有非基因分型动物的情况。该模型规定,一个育种值是基因组和多基因遗传随机效应的总和,其中基因组遗传随机效应与从标记构建的基因组关系矩阵相关联,而多基因遗传随机效应与通常的关系矩阵相关联。通过使用系谱来推导出非基因分型动物的基因组关系矩阵的扩展,从而实现模型向非基因分型动物的扩展。因此,在扩展模型中,通过混合传统 EBV 计算中使用的信息和纯粹的基因组 EBV 计算中使用的信息来获得估计的育种值。使用平均信息 REML 估计模型中的参数,并通过最佳线性无偏预测(BLUP)获得估计的育种值。该方法使用模拟数据集进行了说明。
本文提出的向非基因分型动物扩展的方法使得将所有基因组、系谱和表型信息集成到基因组预测的一步法中成为可能。这种一步法可以获得更准确的估计育种值,并有可能成为未来猪和牛育种中实际评估中基因组预测育种值的标准工具。