文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于通过随机投影进行数据降维的稳健分类器。

Robust classifiers for data reduced via random projections.

作者信息

Majumdar Angshul, Ward Rabab K

机构信息

Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2010 Oct;40(5):1359-71. doi: 10.1109/TSMCB.2009.2038493. Epub 2010 Jan 26.


DOI:10.1109/TSMCB.2009.2038493
PMID:20106743
Abstract

The computational cost for most classification algorithms is dependent on the dimensionality of the input samples. As the dimensionality could be high in many cases, particularly those associated with image classification, reducing the dimensionality of the data becomes a necessity. The traditional dimensionality reduction methods are data dependent, which poses certain practical problems. Random projection (RP) is an alternative dimensionality reduction method that is data independent and bypasses these problems. The nearest neighbor classifier has been used with the RP method in classification problems. To obtain higher recognition accuracy, this study looks at the robustness of RP dimensionality reduction for several recently proposed classifiers--sparse classifier (SC), group SC (along with their fast versions), and the nearest subspace classifier. Theoretical proofs are offered regarding the robustness of these classifiers to RP. The theoretical results are confirmed by experimental evaluations.

摘要

大多数分类算法的计算成本取决于输入样本的维度。由于在许多情况下维度可能很高,特别是与图像分类相关的情况,因此降低数据维度成为必要。传统的降维方法依赖于数据,这带来了一些实际问题。随机投影(RP)是一种与数据无关的替代降维方法,可以避开这些问题。最近在分类问题中,最近邻分类器已与RP方法一起使用。为了获得更高的识别准确率,本研究考察了RP降维对几种最近提出的分类器(稀疏分类器(SC)、组SC(及其快速版本)和最近子空间分类器)的鲁棒性。提供了关于这些分类器对RP鲁棒性的理论证明。理论结果通过实验评估得到了证实。

相似文献

[1]
Robust classifiers for data reduced via random projections.

IEEE Trans Syst Man Cybern B Cybern. 2010-10

[2]
The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier.

IEEE Trans Pattern Anal Mach Intell. 2005-9

[3]
Distance-preserving projection of high-dimensional data for nonlinear dimensionality reduction.

IEEE Trans Pattern Anal Mach Intell. 2004-9

[4]
Sparse multinomial logistic regression: fast algorithms and generalization bounds.

IEEE Trans Pattern Anal Mach Intell. 2005-6

[5]
Learning weighted metrics to minimize nearest-neighbor classification error.

IEEE Trans Pattern Anal Mach Intell. 2006-7

[6]
LESS: a model-based classifier for sparse subspaces.

IEEE Trans Pattern Anal Mach Intell. 2005-9

[7]
On visualization and aggregation of nearest neighbor classifiers.

IEEE Trans Pattern Anal Mach Intell. 2005-10

[8]
Voting among virtually generated versions of a classification problem.

IEEE Trans Syst Man Cybern B Cybern. 2012-6

[9]
A fast nearest neighbor classifier based on self-organizing incremental neural network.

Neural Netw. 2008-12

[10]
Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique.

IEEE Trans Pattern Anal Mach Intell. 2007-12

引用本文的文献

[1]
Single-sample face recognition based on intra-class differences in a variation model.

Sensors (Basel). 2015-1-8

[2]
A new exact test for the evaluation of population pharmacokinetic and/or pharmacodynamic models using random projections.

Pharm Res. 2011-4-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索