Suppr超能文献

镰状细胞病肾缺血后早期和显著的血液动力学、信号转导和基因表达改变。

Early and prominent alterations in hemodynamics, signaling, and gene expression following renal ischemia in sickle cell disease.

机构信息

Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Apr;298(4):F892-9. doi: 10.1152/ajprenal.00631.2009. Epub 2010 Jan 27.

Abstract

Acute ischemic insults to the kidney are recognized complications of human sickle cell disease (SCD). The present study analyzed in a transgenic SCD murine model the early renal response to acute ischemia. Renal hemodynamics were profoundly impaired following ischemia in sickle mice compared with wild-type mice: glomerular filtration rate, along with renal plasma flow and blood flow rates, were markedly reduced, while renal vascular resistances were increased more than threefold in sickle mice following ischemia. In addition to these changes in renal hemodynamics, there were profound disturbances in renal signaling processes: phosphorylation of members of the MAPK and Akt signaling proteins occurred in the kidney in wild-type mice after ischemia, whereas such phosphorylation did not occur in the kidney in sickle mice after ischemia. ATP content in the postischemic kidney in sickle mice was less than half that observed in wild-type mice. Examination of the expression of candidate genes uncovered changes that may predispose to increased sensitivity of the kidney in sickle mice to ischemia: increased expression of inducible nitric oxide synthase and decreased expression of endothelial nitric oxide synthase, and increased expression of TNF-alpha. Inducibility of anti-inflammatory, cytoprotective genes, such as heme oxygenase-1 and IL-10, was not impaired in sickle mice after ischemia. We conclude that the kidney in SCD is remarkably vulnerable to acute ischemic insults. We speculate that such sensitivity of the kidney to ischemia in SCD may underlie the occurrence of acute kidney injury in patients with SCD and may set the stage for the emergence of chronic kidney disease in SCD.

摘要

急性缺血性肾损伤是人类镰状细胞病(SCD)的公认并发症。本研究在转基因 SCD 鼠模型中分析了急性缺血对肾脏的早期反应。与野生型小鼠相比,镰状细胞小鼠缺血后肾脏的血液动力学受到严重损害:肾小球滤过率、肾血浆流量和血流速率明显降低,而缺血后镰状细胞小鼠的肾血管阻力增加了三倍以上。除了这些肾血液动力学变化外,肾信号转导过程也发生了深刻的紊乱:缺血后野生型小鼠肾脏中的 MAPK 和 Akt 信号蛋白的磷酸化发生,但缺血后镰状细胞小鼠肾脏中未发生磷酸化。缺血后镰状细胞小鼠肾脏中的 ATP 含量不到野生型小鼠的一半。对候选基因的表达进行检查发现了可能导致镰状细胞小鼠肾脏对缺血更敏感的变化:诱导型一氧化氮合酶表达增加,内皮型一氧化氮合酶表达减少,TNF-α表达增加。缺血后镰状细胞小鼠抗炎、细胞保护基因(如血红素加氧酶-1 和 IL-10)的诱导能力未受损。我们得出结论,SCD 中的肾脏对急性缺血性损伤非常敏感。我们推测,SCD 中肾脏对缺血的这种敏感性可能是 SCD 患者发生急性肾损伤的基础,并可能为 SCD 中慢性肾脏病的发生奠定基础。

相似文献

1
Early and prominent alterations in hemodynamics, signaling, and gene expression following renal ischemia in sickle cell disease.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F892-9. doi: 10.1152/ajprenal.00631.2009. Epub 2010 Jan 27.
2
Transgenic sickle mice are markedly sensitive to renal ischemia-reperfusion injury.
Am J Pathol. 2005 Apr;166(4):963-72. doi: 10.1016/S0002-9440(10)62318-8.
3
Anomalous renal effects of tin protoporphyrin in a murine model of sickle cell disease.
Am J Pathol. 2006 Jul;169(1):21-31. doi: 10.2353/ajpath.2006.051195.
4
Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury.
J Biol Chem. 2004 Dec 10;279(50):52282-92. doi: 10.1074/jbc.M407629200. Epub 2004 Sep 8.
6
Ischemic preconditioning improved renal ischemia/reperfusion injury and hyperglycemia.
IUBMB Life. 2019 Mar;71(3):321-329. doi: 10.1002/iub.1972. Epub 2018 Nov 27.
8
Preventive Effects of Grape Extract on Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice.
Biol Pharm Bull. 2019;42(11):1883-1890. doi: 10.1248/bpb.b19-00462.
9
Interleukin-19 mediates tissue damage in murine ischemic acute kidney injury.
PLoS One. 2013;8(2):e56028. doi: 10.1371/journal.pone.0056028. Epub 2013 Feb 26.
10
Hepatic ischemic preconditioning provides protection against distant renal ischemia and reperfusion injury in mice.
J Korean Med Sci. 2012 May;27(5):547-52. doi: 10.3346/jkms.2012.27.5.547. Epub 2012 Apr 25.

引用本文的文献

2
Hydroxyurea Mitigates Heme-Induced Inflammation and Kidney Injury in Humanized Sickle Cell Mice.
Int J Mol Sci. 2025 Mar 30;26(7):3214. doi: 10.3390/ijms26073214.
3
New insights into the role of heme oxygenase-1 in acute kidney injury.
Kidney Res Clin Pract. 2020 Dec 31;39(4):387-401. doi: 10.23876/j.krcp.20.091.
4
Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex.
Am J Physiol Renal Physiol. 2019 Sep 1;317(3):F695-F704. doi: 10.1152/ajprenal.00085.2019. Epub 2019 Jun 19.
5
Effect of renin-angiotensin-aldosterone system blocking agents on progression of glomerulopathy in sickle cell disease.
Br J Haematol. 2019 Jan;184(2):246-252. doi: 10.1111/bjh.15651. Epub 2018 Nov 21.
6
RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice.
Haematologica. 2018 May;103(5):787-798. doi: 10.3324/haematol.2017.180992. Epub 2018 Mar 8.
7
Sickle cell nephropathy: an update on pathophysiology, diagnosis, and treatment.
Int Urol Nephrol. 2018 Jun;50(6):1075-1083. doi: 10.1007/s11255-018-1803-3. Epub 2018 Jan 30.
8
Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice.
J Am Soc Nephrol. 2017 Aug;28(8):2443-2458. doi: 10.1681/ASN.2016070711. Epub 2017 Mar 27.
9
Acute kidney injury during a pediatric sickle cell vaso-occlusive pain crisis.
Pediatr Nephrol. 2017 Aug;32(8):1451-1456. doi: 10.1007/s00467-017-3623-6. Epub 2017 Feb 25.
10
Severe anemia early in life as a risk factor for sickle-cell kidney disease.
Blood. 2017 Jan 19;129(3):385-387. doi: 10.1182/blood-2016-09-738104. Epub 2016 Dec 5.

本文引用的文献

1
Heme degradation and vascular injury.
Antioxid Redox Signal. 2010 Feb;12(2):233-48. doi: 10.1089/ars.2009.2822.
2
Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis.
Am J Kidney Dis. 2009 Jun;53(6):961-73. doi: 10.1053/j.ajkd.2008.11.034. Epub 2009 Apr 5.
3
Sickle cell disease and the kidney.
Nat Clin Pract Nephrol. 2009 Feb;5(2):78-88. doi: 10.1038/ncpneph1008. Epub 2008 Dec 2.
4
Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects.
Trends Pharmacol Sci. 2009 Jan;30(1):48-54. doi: 10.1016/j.tips.2008.10.003. Epub 2008 Nov 29.
5
Acute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease?
Microvasc Res. 2009 Jan;77(1):8-12. doi: 10.1016/j.mvr.2008.09.001. Epub 2008 Sep 11.
7
Distant-organ changes after acute kidney injury.
Nephron Physiol. 2008;109(4):p80-4. doi: 10.1159/000142940. Epub 2008 Sep 18.
8
Inflammation in acute kidney injury.
Nephron Exp Nephrol. 2008;109(4):e102-7. doi: 10.1159/000142934. Epub 2008 Sep 18.
9
Long-term outcomes of acute kidney injury.
Adv Chronic Kidney Dis. 2008 Jul;15(3):297-307. doi: 10.1053/j.ackd.2008.04.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验