Aslan Mutay, Ryan Thomas M, Townes Tim M, Coward Lori, Kirk Marion C, Barnes Stephen, Alexander C Bruce, Rosenfeld Steven S, Freeman Bruce A
Department of Anesthesiology, University of Alabama at Birmingham, 35233, USA.
J Biol Chem. 2003 Feb 7;278(6):4194-204. doi: 10.1074/jbc.M208916200. Epub 2002 Oct 24.
The intermittent vascular occlusion occurring in sickle cell disease (SCD) leads to ischemia-reperfusion injury and activation of inflammatory processes including enhanced production of reactive oxygen species and increased expression of inducible nitric-oxide synthase (NOS2). Appreciating that impaired nitric oxide-dependent vascular function and the concomitant formation of oxidizing and nitrating species occur in concert with increased rates of tissue reactive oxygen species production, liver and kidney NOS2 expression, tissue 3-nitrotyrosine (NO(2)Tyr) formation and apoptosis were evaluated in human SCD tissues and a murine model of SCD. Liver and kidney NOS2 expression and NO(2)Tyr immunoreactivity were significantly increased in SCD mice and humans, but not in nondiseased tissues. TdT-mediated nick end-label (TUNEL) staining showed apoptotic cells in regions expressing elevated levels of NOS2 and NO(2)Tyr in all SCD tissues. Gas chromatography mass spectrometry analysis revealed increased plasma protein NO(2)Tyr content and increased levels of hepatic and renal protein NO(2)Tyr derivatives in SCD (21.4 +/- 2.6 and 37.5 +/- 7.8 ng/mg) versus wild type mice (8.2 +/- 2.2 and 10 +/- 1.2 ng/mg), respectively. Western blot analysis and immunoprecipitation of SCD mouse liver and kidney proteins revealed one principal NO(2)Tyr-containing protein of 42 kDa, compared with controls. Enzymatic in-gel digestion and MALDI-TOF mass spectrometry identified this nitrated protein as actin. Electrospray ionization and fragment analysis by tandem mass spectrometry revealed that 3 of 15 actin tyrosine residues are nitrated (Tyr(91), Tyr(198), and Tyr(240)) at positions that significantly modify actin assembly. Confocal microscopy of SCD human and mouse tissues revealed that nitration led to morphologically distinct disorganization of filamentous actin. In aggregate, we have observed that the hemoglobin point mutation of sickle cell disease that mediates hemoglobin polymerization defects is translated, via inflammatory oxidant reactions, into defective cytoskeletal polymerization.
镰状细胞病(SCD)中发生的间歇性血管闭塞会导致缺血-再灌注损伤,并激活炎症过程,包括活性氧生成增加和诱导型一氧化氮合酶(NOS2)表达上调。鉴于一氧化氮依赖性血管功能受损以及氧化和硝化物质的同时形成与组织活性氧生成速率增加同时发生,我们在人类SCD组织和SCD小鼠模型中评估了肝脏和肾脏中NOS2的表达、组织3-硝基酪氨酸(NO(2)Tyr)的形成以及细胞凋亡情况。SCD小鼠和人类的肝脏和肾脏中NOS2表达以及NO(2)Tyr免疫反应性显著增加,但在非患病组织中未出现这种情况。TdT介导的缺口末端标记(TUNEL)染色显示,在所有SCD组织中,表达高水平NOS2和NO(2)Tyr的区域存在凋亡细胞。气相色谱-质谱分析显示,与野生型小鼠(分别为8.2±2.2和10±1.2 ng/mg)相比,SCD小鼠血浆蛋白中NO(2)Tyr含量增加,肝脏和肾脏蛋白中NO(2)Tyr衍生物水平升高(分别为21.4±2.6和37.5±7.8 ng/mg)。对SCD小鼠肝脏和肾脏蛋白进行的蛋白质印迹分析和免疫沉淀显示,与对照组相比,有一种主要的含NO(2)Tyr的42 kDa蛋白。酶促凝胶内消化和基质辅助激光解吸电离飞行时间质谱分析确定这种硝化蛋白为肌动蛋白。电喷雾电离和串联质谱片段分析显示,15个肌动蛋白酪氨酸残基中有3个(Tyr(91)、Tyr(198)和Tyr(240))在显著改变肌动蛋白组装的位置发生了硝化。对SCD人类和小鼠组织进行的共聚焦显微镜检查显示硝化导致丝状肌动蛋白在形态上出现明显的紊乱。总体而言,我们观察到,介导血红蛋白聚合缺陷的镰状细胞病血红蛋白点突变通过炎症氧化反应转化为有缺陷的细胞骨架聚合。