Suppr超能文献

视网膜神经节细胞的感受野镶嵌在没有视觉经验的情况下就已形成。

Receptive field mosaics of retinal ganglion cells are established without visual experience.

作者信息

Anishchenko Anastacia, Greschner Martin, Elstrott Justin, Sher Alexander, Litke Alan M, Feller Marla B, Chichilnisky E J

机构信息

Dept. of Molecular and Cell Biology, UC Berkeley,Berkeley, CA 94720, USA.

出版信息

J Neurophysiol. 2010 Apr;103(4):1856-64. doi: 10.1152/jn.00896.2009. Epub 2010 Jan 27.

Abstract

A characteristic feature of adult retina is mosaic organization: a spatial arrangement of cells of each morphological and functional type that produces uniform sampling of visual space. How the mosaics of visual receptive fields emerge in the retina during development is not fully understood. Here we use a large-scale multielectrode array to determine the mosaic organization of retinal ganglion cells (RGCs) in rats around the time of eye opening and in the adult. At the time of eye opening, we were able to reliably distinguish two types of ON RGCs and two types of OFF RGCs in rat retina based on their light response and intrinsic firing properties. Although the light responses of individual cells were not yet mature at this age, each of the identified functional RGC types formed a receptive field mosaic, where the spacing of the receptive field centers and the overlap of the receptive field extents were similar to those observed in the retinas of adult rats. These findings suggest that, although the light response properties of RGCs may need vision to reach full maturity, extensive visual experience is not required for individual RGC types to form a regular sensory map of visual space.

摘要

成年视网膜的一个特征是镶嵌组织

每种形态和功能类型的细胞在空间上的排列方式,这种排列对视觉空间进行均匀采样。在发育过程中,视网膜中视觉感受野的镶嵌是如何形成的,目前尚未完全了解。在这里,我们使用大规模多电极阵列来确定大鼠在睁眼前后及成年时视网膜神经节细胞(RGC)的镶嵌组织。在睁眼时,我们能够根据大鼠视网膜中两种类型的ON RGC和两种类型的OFF RGC的光反应和内在放电特性可靠地将它们区分开来。尽管此时单个细胞的光反应尚未成熟,但每种已识别的功能性RGC类型都形成了一个感受野镶嵌,其中感受野中心的间距和感受野范围的重叠与成年大鼠视网膜中观察到的情况相似。这些发现表明,尽管RGC的光反应特性可能需要视觉才能完全成熟,但对于单个RGC类型形成视觉空间的规则感觉图谱来说,并不需要广泛的视觉经验。

相似文献

1
Receptive field mosaics of retinal ganglion cells are established without visual experience.
J Neurophysiol. 2010 Apr;103(4):1856-64. doi: 10.1152/jn.00896.2009. Epub 2010 Jan 27.
3
Inter-mosaic coordination of retinal receptive fields.
Nature. 2021 Apr;592(7854):409-413. doi: 10.1038/s41586-021-03317-5. Epub 2021 Mar 10.
4
Spatial properties and functional organization of small bistratified ganglion cells in primate retina.
J Neurosci. 2007 Nov 28;27(48):13261-72. doi: 10.1523/JNEUROSCI.3437-07.2007.
7
Spatial distribution and functional integration of displaced retinal ganglion cells.
Sci Rep. 2025 Feb 28;15(1):7123. doi: 10.1038/s41598-025-91045-5.
8
Receptive field structure-function correlates in developing turtle retinal ganglion cells.
Eur J Neurosci. 2006 Aug;24(3):787-94. doi: 10.1111/j.1460-9568.2006.04971.x.
9
Spatial receptive field properties of rat retinal ganglion cells.
Vis Neurosci. 2011 Sep;28(5):403-17. doi: 10.1017/S0952523811000307.
10
Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation.
J Neurophysiol. 2018 Feb 1;119(2):389-400. doi: 10.1152/jn.00872.2016. Epub 2017 Oct 18.

引用本文的文献

1
Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa.
Nat Commun. 2023 Dec 12;14(1):8256. doi: 10.1038/s41467-023-44063-8.
2
Late gene therapy limits the restoration of retinal function in a mouse model of retinitis pigmentosa.
bioRxiv. 2023 Apr 8:2023.04.07.536035. doi: 10.1101/2023.04.07.536035.
3
Robust cone-mediated signaling persists late into rod photoreceptor degeneration.
Elife. 2022 Aug 30;11:e80271. doi: 10.7554/eLife.80271.
4
Inter-mosaic coordination of retinal receptive fields.
Nature. 2021 Apr;592(7854):409-413. doi: 10.1038/s41586-021-03317-5. Epub 2021 Mar 10.
5
Electrical Imaging of Light-Induced Signals Across and Within Retinal Layers.
Front Neurosci. 2020 Nov 19;14:563964. doi: 10.3389/fnins.2020.563964. eCollection 2020.
6
Ignoring correlated activity causes a failure of retinal population codes.
Nat Commun. 2020 Sep 14;11(1):4605. doi: 10.1038/s41467-020-18436-2.
7
New Features of Receptive Fields in Mouse Retina through Spike-triggered Covariance.
Exp Neurobiol. 2020 Feb 29;29(1):38-49. doi: 10.5607/en.2020.29.1.38.
8
Characterization of Retinal Functionality at Different Eccentricities in a Diurnal Rodent.
Front Cell Neurosci. 2018 Dec 3;12:444. doi: 10.3389/fncel.2018.00444. eCollection 2018.
9
Pathway-Specific Asymmetries between ON and OFF Visual Signals.
J Neurosci. 2018 Nov 7;38(45):9728-9740. doi: 10.1523/JNEUROSCI.2008-18.2018. Epub 2018 Sep 24.
10
Glutamate Activity Regulates and Dendritic Development of J-RGCs.
Front Cell Neurosci. 2018 Aug 14;12:249. doi: 10.3389/fncel.2018.00249. eCollection 2018.

本文引用的文献

1
Neurotransmission selectively regulates synapse formation in parallel circuits in vivo.
Nature. 2009 Aug 20;460(7258):1016-20. doi: 10.1038/nature08236.
2
Uniform signal redundancy of parasol and midget ganglion cells in primate retina.
J Neurosci. 2009 Apr 8;29(14):4675-80. doi: 10.1523/JNEUROSCI.5294-08.2009.
3
Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina.
J Physiol. 2009 Feb 15;587(Pt 4):819-28. doi: 10.1113/jphysiol.2008.161240. Epub 2008 Dec 22.
4
Effect of visual experience on the maturation of ON-OFF direction selective ganglion cells in the rabbit retina.
Vision Res. 2008 Oct;48(23-24):2466-75. doi: 10.1016/j.visres.2008.08.010. Epub 2008 Sep 27.
5
Synaptic activity, visual experience and the maturation of retinal synaptic circuitry.
J Physiol. 2008 Sep 15;586(18):4347-55. doi: 10.1113/jphysiol.2008.159202. Epub 2008 Jul 31.
7
Mechanisms underlying development of visual maps and receptive fields.
Annu Rev Neurosci. 2008;31:479-509. doi: 10.1146/annurev.neuro.31.060407.125533.
8
The development of intrinsic excitability in mouse retinal ganglion cells.
Dev Neurobiol. 2008 Aug;68(9):1196-212. doi: 10.1002/dneu.20653.
10
Vision triggers an experience-dependent sensitive period at the retinogeniculate synapse.
J Neurosci. 2008 Apr 30;28(18):4807-17. doi: 10.1523/JNEUROSCI.4667-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验