Lee Sang-Hun, Govindaiah G, Cox Charles L
Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL, USA.
J Neurophysiol. 2010 Apr;103(4):1728-34. doi: 10.1152/jn.00540.2009. Epub 2010 Jan 27.
The thalamic reticular nucleus (TRN) consists of GABA-containing neurons that form reciprocal synaptic connections with thalamic relay nuclei. Excitatory synaptic innervation of TRN neurons arises from glutamatergic afferents from thalamocortical relay neurons and deep layer corticothalamic neurons, and they produce excitation via both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Quinoxaline derivatives [e.g., 6,7-dinitroquinoxaline-2,3-dione (DNQX), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] have routinely been used as non-NMDA receptor antagonists over the last two decades. In this study, we examined whether quinoxaline derivatives alter the intrinsic properties of thalamic neurons in light of recent findings indicating that these compounds can alter neuronal excitability in hippocampal and cerebellar neurons via transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs). Whole cell recordings were obtained from TRN and ventrobasal (VB) thalamic relay neurons in vitro. DNQX and CNQX produced a consistent depolarization in all TRN neurons tested. The depolarization persisted in tetrodotoxin and low Ca²+/high Mg²+ conditions, suggesting a postsynaptic site of action. In contrast, DNQX and CNQX produced little or no change in VB thalamocortical relay neurons. The nonspecific ionotropic glutamate receptor antagonist, kynurenic acid, and the selective AMPAR antagonist, 4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-5-yl)-benzenamine hydrochloride, blocked the DNQX-mediated depolarizations. Our results indicate that the DNQX- and CNQX-mediated depolarizations are mediated by AMPAR but not kainate receptors in TRN neurons. The AMPAR-positive allosteric modulator, trichloromethiazide, potentiated the DNQX-mediated depolarization in TRN neurons but did not unmask any excitatory actions of DNQX/CNQX in relay neurons. This selective action may not only reveal a differential TARP distribution among thalamic neurons but also may provide insight into distinct characteristics of AMPA receptors of thalamic neurons that could be exploited by future pharmacological development. Furthermore, these data suggest that quinoxaline derivatives could modulate synaptic transmission and alter neuronal excitability.
丘脑网状核(TRN)由含γ-氨基丁酸(GABA)的神经元组成,这些神经元与丘脑中继核形成相互的突触连接。TRN神经元的兴奋性突触支配来自丘脑皮质中继神经元和深层皮质丘脑神经元的谷氨酸能传入纤维,它们通过N-甲基-D-天冬氨酸(NMDA)受体和非NMDA受体产生兴奋。在过去二十年中,喹喔啉衍生物[例如,6,7-二硝基喹喔啉-2,3-二酮(DNQX)、6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)]通常被用作非NMDA受体拮抗剂。在本研究中,鉴于最近的研究结果表明这些化合物可通过跨膜AMPA受体(AMPAR)调节蛋白(TARP)改变海马和小脑神经元的神经元兴奋性,我们研究了喹喔啉衍生物是否会改变丘脑神经元的内在特性。在体外从TRN和腹侧基底(VB)丘脑中继神经元获得全细胞记录。DNQX和CNQX在所有测试的TRN神经元中产生一致的去极化。在河豚毒素和低钙²⁺/高镁²⁺条件下,去极化持续存在,表明作用位点在突触后。相比之下,DNQX和CNQX在VB丘脑皮质中继神经元中几乎没有产生变化或没有产生变化。非特异性离子型谷氨酸受体拮抗剂犬尿喹啉酸和选择性AMPAR拮抗剂4-(8-甲基-9H-1,3-二氧杂环戊烯并[4,5-h][2,3]苯并二氮杂卓-5-基)-苯甲胺盐酸盐阻断了DNQX介导的去极化。我们的结果表明,DNQX和CNQX介导的去极化是由TRN神经元中的AMPAR而非海人藻酸受体介导的。AMPAR阳性变构调节剂三氯甲噻嗪增强了TRN神经元中DNQX介导的去极化,但未揭示DNQX/CNQX在中继神经元中的任何兴奋作用。这种选择性作用不仅可能揭示丘脑神经元之间TARP分布的差异,还可能为丘脑神经元AMPA受体的独特特征提供见解,这些特征可被未来的药物开发所利用。此外,这些数据表明喹喔啉衍生物可调节突触传递并改变神经元兴奋性。