Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
J Neurosci. 2020 Mar 25;40(13):2737-2752. doi: 10.1523/JNEUROSCI.2902-19.2020. Epub 2020 Feb 19.
Microinjections of a glutamate AMPA antagonist (DNQX) in medial shell of nucleus accumbens (NAc) can cause either intense appetitive motivation (i.e., 'desire') or intense defensive motivation (i.e., 'dread'), depending on site along a flexible rostrocaudal gradient and on environmental ambience. DNQX, by blocking excitatory AMPA glutamate inputs, is hypothesized to produce relative inhibitions of NAc neurons. However, given potential alternative explanations, it is not known whether neuronal inhibition is in fact necessary for NAc DNQX microinjections to generate motivations. Here we provide a direct test of whether local neuronal inhibition in NAc is necessary for DNQX microinjections to produce either desire or dread. We used optogenetic channelrhodopsin (ChR2) excitations at the same local sites in NAc as DNQX microinjections to oppose relative neuronal inhibitions induced by DNQX in female and male rats. We found that same-site ChR2 excitation effectively reversed the ability of NAc DNQX microinjections to generate appetitive motivation, and similarly reversed ability of DNQX microinjections to generate defensive motivation. Same-site NAc optogenetic excitations also attenuated recruitment of Fos expression in other limbic structures throughout the brain, which was otherwise elevated by NAc DNQX microinjections that generated motivation. However, to successfully reverse motivation generation, an optic fiber tip for ChR2 illumination needed to be located within <1 mm of the corresponding DNQX microinjector tip; that is, both truly at the same NAc site. Thus, we confirm that localized NAc neuronal inhibition is required for AMPA-blocking microinjections in medial shell to induce either positively-valenced 'desire' or negatively-valenced 'dread'. A major hypothesis posits neuronal inhibitions in nucleus accumbens generate intense motivation. Microinjections in nucleus accumbens of glutamate antagonist, DNQX, which might suppress local neuronal firing, generate either appetitive or defensive motivation, depending on site and environmental factors. Is neuronal inhibition in nucleus accumbens required for such pharmacologically-induced motivations? Here we demonstrate that neuronal inhibition is necessary to generate appetitive or defensive motivations, using local optogenetic excitations to oppose putative DNQX-induced inhibitions. We show that excitation at the same site prevents DNQX microinjections from recruiting downstream limbic structures into neurobiological activation, and simultaneously prevents generation of either appetitive or defensive motivated behaviors. These results may be relevant to roles of nucleus accumbens mechanisms in pathological motivations, including addiction and paranoia.
微注射谷氨酸 AMPA 拮抗剂(DNQX)于伏隔核(NAc)的内侧壳可导致强烈的食欲动机(即“渴望”)或强烈的防御动机(即“恐惧”),这取决于灵活的前后梯度上的部位和环境氛围。DNQX 通过阻断兴奋性 AMPA 谷氨酸输入,被假设为产生 NAc 神经元的相对抑制。然而,鉴于潜在的替代解释,尚不清楚神经元抑制是否实际上是 NAc DNQX 微注射产生动机所必需的。在这里,我们直接测试了 NAc 中的局部神经元抑制是否是 NAc DNQX 微注射产生渴望或恐惧的必要条件。我们使用光遗传学通道视紫红质(ChR2)在 NAc 中的相同局部部位激发,以拮抗 DNQX 微注射在雌性和雄性大鼠中诱导的相对神经元抑制。我们发现,相同部位的 ChR2 激发有效地逆转了 NAc DNQX 微注射产生食欲动机的能力,并且同样逆转了 DNQX 微注射产生防御动机的能力。相同部位的 NAc 光遗传学激发也减弱了大脑其他边缘结构中 Fos 表达的募集,否则,由 NAc DNQX 微注射产生的动机会升高。然而,为了成功逆转动机产生,ChR2 照明的光纤尖端需要位于与相应的 DNQX 微注射器尖端相距<1mm 的位置;也就是说,两者确实在同一个 NAc 部位。因此,我们证实,局部 NAc 神经元抑制是内侧壳中 AMPA 阻断微注射诱导阳性价值“渴望”或阴性价值“恐惧”所必需的。一个主要假设是,伏隔核中的神经元抑制会产生强烈的动机。谷氨酸拮抗剂 DNQX 的微注射可能会抑制局部神经元放电,产生食欲或防御动机,这取决于部位和环境因素。这种药理学诱导的动机是否需要伏隔核中的神经元抑制?在这里,我们使用局部光遗传学激发来对抗潜在的 DNQX 诱导抑制,证明了神经元抑制是产生食欲或防御动机所必需的。我们表明,在相同部位的激发可防止 DNQX 微注射招募下游边缘结构进入神经生物学激活,并同时防止产生食欲或防御性动机行为。这些结果可能与伏隔核机制在病理性动机中的作用有关,包括成瘾和偏执。