Suppr超能文献

基于逻辑回归分析的牙测量性别评估

Odontometric sex assessment from logistic regression analysis.

机构信息

Department of Forensic Odontology, S.D.M. College of Dental Sciences and Hospital, Sattur, 580009, Dharwad, India.

出版信息

Int J Legal Med. 2011 Mar;125(2):199-204. doi: 10.1007/s00414-010-0417-9. Epub 2010 Jan 27.

Abstract

Odontometric sex assessment is considered a useful adjunct to more robust predictors such as pelvic and cranial bones, and discriminant function analysis (DA) has been widely applied in dental sex assessment. Logistic regression analysis (LRA) is considered a better alternative, although still untested in odontometric sex prediction. This study examines the use of LRA in dental sex assessment and compares its success to DA. Mesiodistal and buccolingual dimensions of all teeth, except third molars, were obtained on dental stone casts of 105 young adults (52 females, 53 males) using digital caliper. Application of LRA to teeth of both jaws combined and to maxillary and mandibular teeth separately yielded correct sex allocation rates ranging from 76% to 100%, which proved superior to sex assessment using DA (∼52-71%). LRA enabled optimal sex prediction (100%) when all teeth in both the jaws were included. Results were not as accurate when only maxillary (76.2%) or mandibular (84.8%) teeth were used. To assess and compare the use of these multivariate techniques in practical forensic casework, >25% of tooth variables were randomly deleted. LRA still performed better (∼91% sex allocation accuracy vs. 62.9% for DA), indicating that LRA may be superior in its ability to predict sex irrespective of the presence of complete or incomplete sets of dentitions and should be preferred in dental sex assessment. The 100% success rate of LRA in correctly assigning sex is also noteworthy considering that, in general, tooth measurements have yielded sub-optimal sex prediction levels. However, unambiguous sex assessment is possible only when the entire dentition is available and correct sex allocation levels decreases when teeth are missing.

摘要

牙测量性别评估被认为是骨盆和颅骨等更可靠预测因子的有用补充,判别函数分析(DFA)已广泛应用于牙性别评估。逻辑回归分析(LRA)被认为是更好的选择,尽管在牙测量性别预测中尚未经过测试。本研究检查了 LRA 在牙性别评估中的应用,并比较了其与 DFA 的成功。使用数字卡尺从 105 名年轻成年人(52 名女性,53 名男性)的牙石膏模型中获得所有牙齿(除第三磨牙外)的近远中径和颊舌径。LRA 应用于上下颌牙齿的组合以及上颌和下颌牙齿的单独应用,产生了正确的性别分配率,范围从 76%到 100%,这证明优于使用 DFA 的性别评估(约 52-71%)。当上下颌所有牙齿都包括在内时,LRA 可以实现最佳的性别预测(100%)。仅使用上颌(76.2%)或下颌(84.8%)牙齿时,结果则不太准确。为了评估和比较这些多元技术在实际法医工作中的应用,随机删除了超过 25%的牙齿变量。LRA 仍然表现更好(性别分配准确率约为 91%,而 DFA 为 62.9%),表明 LRA 可能在预测性别方面具有优势,无论是否存在完整或不完整的牙列,并且应该在牙性别评估中优先使用。LRA 在正确分配性别方面达到 100%的成功率也值得注意,因为一般来说,牙齿测量的性别预测水平并不理想。然而,只有在有完整的牙列时才能进行明确的性别评估,并且当牙齿缺失时,正确的性别分配水平会降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验