Suppr超能文献

基于图谱的人类大脑发育组织分割及在年轻胎儿中的定量验证。

Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses.

机构信息

Biomedical Image Computing Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA.

出版信息

Hum Brain Mapp. 2010 Sep;31(9):1348-58. doi: 10.1002/hbm.20935.

Abstract

Imaging of the human fetus using magnetic resonance (MR) is an essential tool for quantitative studies of normal as well as abnormal brain development in utero. However, because of fundamental differences in tissue types, tissue properties and tissue distribution between the fetal and adult brain, automated tissue segmentation techniques developed for adult brain anatomy are unsuitable for this data. In this paper, we describe methodology for automatic atlas-based segmentation of individual tissue types in motion-corrected 3D volumes reconstructed from clinical MR scans of the fetal brain. To generate anatomically correct automatic segmentations, we create a set of accurate manual delineations and build an in utero 3D statistical atlas of tissue distribution incorporating developing gray and white matter as well as transient tissue types such as the germinal matrix. The probabilistic atlas is associated with an unbiased average shape and intensity template for registration of new subject images to the space of the atlas. Quantitative whole brain 3D validation of tissue labeling performed on a set of 14 fetal MR scans (20.57-22.86 weeks gestational age) demonstrates that this atlas-based EM segmentation approach achieves consistently high DSC performance for the main tissue types in the fetal brain. This work indicates that reliable measures of brain development can be automatically derived from clinical MR imaging and opens up possibility of further 3D volumetric and morphometric studies with multiple fetal subjects.

摘要

利用磁共振(MR)对人体胎儿进行成像,是对胎儿期正常和异常脑发育进行定量研究的重要工具。然而,由于胎儿和成人脑部之间的组织类型、组织特性和组织分布存在根本差异,为成人脑部解剖结构开发的自动组织分割技术并不适用于这些数据。本文介绍了一种基于图谱的自动分割方法,可对从临床胎儿脑部磁共振扫描重建的运动校正 3D 容积中,对个别组织类型进行分割。为了生成解剖学上正确的自动分割,我们创建了一组准确的手动勾画,并构建了一个包含发育中的灰质和白质以及暂时性组织类型(如生发基质)的胎儿期 3D 统计组织分布图谱。概率图谱与无偏平均形状和强度模板相关联,用于将新的主体图像注册到图谱空间。对一组 14 例胎儿磁共振扫描(20.57-22.86 周胎龄)进行的组织标记全脑 3D 验证表明,这种基于图谱的 EM 分割方法可实现胎儿脑内主要组织类型的一致性高 DSC 性能。这项工作表明,可以从临床磁共振成像中自动推导出可靠的大脑发育测量值,并为具有多个胎儿对象的进一步 3D 体积和形态计量学研究开辟了可能性。

相似文献

2
A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation.
Neuroimage. 2010 Nov 1;53(2):460-70. doi: 10.1016/j.neuroimage.2010.06.054. Epub 2010 Jun 30.
3
Atlas-based segmentation of the germinal matrix from in utero clinical MRI of the fetal brain.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):351-8. doi: 10.1007/978-3-540-85988-8_42.
5
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
6
A spatio-temporal atlas of the human fetal brain with application to tissue segmentation.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):289-96. doi: 10.1007/978-3-642-04268-3_36.
7
Brain volume estimation from post-mortem newborn and fetal MRI.
Neuroimage Clin. 2014 Oct 23;6:438-44. doi: 10.1016/j.nicl.2014.10.007. eCollection 2014.
8
Segmentation of neonatal brain MR images using patch-driven level sets.
Neuroimage. 2014 Jan 1;84:141-58. doi: 10.1016/j.neuroimage.2013.08.008. Epub 2013 Aug 19.
9
Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly.
Neuroimage. 2012 Apr 15;60(3):1819-31. doi: 10.1016/j.neuroimage.2012.01.128. Epub 2012 Feb 10.
10
Robust whole-brain segmentation: application to traumatic brain injury.
Med Image Anal. 2015 Apr;21(1):40-58. doi: 10.1016/j.media.2014.12.003. Epub 2014 Dec 24.

引用本文的文献

2
Application of Automatic Segmentation on Super-Resolution Reconstruction MR Images of the Abnormal Fetal Brain.
AJNR Am J Neuroradiol. 2023 Apr;44(4):486-491. doi: 10.3174/ajnr.A7808. Epub 2023 Mar 2.
3
Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs.
Sensors (Basel). 2023 Jan 6;23(2):655. doi: 10.3390/s23020655.
4
Development of Gestational Age-Based Fetal Brain and Intracranial Volume Reference Norms Using Deep Learning.
AJNR Am J Neuroradiol. 2023 Jan;44(1):82-90. doi: 10.3174/ajnr.A7747. Epub 2022 Dec 22.
5
Semi-automatic segmentation of the fetal brain from magnetic resonance imaging.
Front Neurosci. 2022 Nov 11;16:1027084. doi: 10.3389/fnins.2022.1027084. eCollection 2022.
6
Diffusion Tensor Based White Matter Tract Atlases for Pediatric Populations.
Front Neurosci. 2022 Mar 23;16:806268. doi: 10.3389/fnins.2022.806268. eCollection 2022.
7
Morphology and morphometry of the human early foetal brain: A three-dimensional analysis.
J Anat. 2021 Aug;239(2):498-516. doi: 10.1111/joa.13433. Epub 2021 Mar 23.
9
A Deep Attentive Convolutional Neural Network for Automatic Cortical Plate Segmentation in Fetal MRI.
IEEE Trans Med Imaging. 2021 Apr;40(4):1123-1133. doi: 10.1109/TMI.2020.3046579. Epub 2021 Apr 1.
10
Fetal Cortical Plate Segmentation Using Fully Convolutional Networks With Multiple Plane Aggregation.
Front Neurosci. 2020 Dec 2;14:591683. doi: 10.3389/fnins.2020.591683. eCollection 2020.

本文引用的文献

1
A spatio-temporal atlas of the human fetal brain with application to tissue segmentation.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):289-96. doi: 10.1007/978-3-642-04268-3_36.
2
Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation.
IEEE Trans Med Imaging. 2010 Jan;29(1):146-58. doi: 10.1109/TMI.2009.2030679. Epub 2009 Sep 9.
3
Atlas-based segmentation of the germinal matrix from in utero clinical MRI of the fetal brain.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):351-8. doi: 10.1007/978-3-540-85988-8_42.
4
MR imaging methods for assessing fetal brain development.
Dev Neurobiol. 2008 May;68(6):700-11. doi: 10.1002/dneu.20614.
5
The mean field theory in EM procedures for blind Markov random field image restoration.
IEEE Trans Image Process. 1993;2(1):27-40. doi: 10.1109/83.210863.
6
Morphometric analysis of white matter lesions in MR images: method and validation.
IEEE Trans Med Imaging. 1994;13(4):716-24. doi: 10.1109/42.363096.
7
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
9
Segmentation of brain MRI in young children.
Acad Radiol. 2007 Nov;14(11):1350-66. doi: 10.1016/j.acra.2007.07.020.
10
Automatic segmentation and reconstruction of the cortex from neonatal MRI.
Neuroimage. 2007 Nov 15;38(3):461-77. doi: 10.1016/j.neuroimage.2007.07.030. Epub 2007 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验