Suppr超能文献

基于图谱的人类大脑发育组织分割及在年轻胎儿中的定量验证。

Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses.

机构信息

Biomedical Image Computing Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA.

出版信息

Hum Brain Mapp. 2010 Sep;31(9):1348-58. doi: 10.1002/hbm.20935.

Abstract

Imaging of the human fetus using magnetic resonance (MR) is an essential tool for quantitative studies of normal as well as abnormal brain development in utero. However, because of fundamental differences in tissue types, tissue properties and tissue distribution between the fetal and adult brain, automated tissue segmentation techniques developed for adult brain anatomy are unsuitable for this data. In this paper, we describe methodology for automatic atlas-based segmentation of individual tissue types in motion-corrected 3D volumes reconstructed from clinical MR scans of the fetal brain. To generate anatomically correct automatic segmentations, we create a set of accurate manual delineations and build an in utero 3D statistical atlas of tissue distribution incorporating developing gray and white matter as well as transient tissue types such as the germinal matrix. The probabilistic atlas is associated with an unbiased average shape and intensity template for registration of new subject images to the space of the atlas. Quantitative whole brain 3D validation of tissue labeling performed on a set of 14 fetal MR scans (20.57-22.86 weeks gestational age) demonstrates that this atlas-based EM segmentation approach achieves consistently high DSC performance for the main tissue types in the fetal brain. This work indicates that reliable measures of brain development can be automatically derived from clinical MR imaging and opens up possibility of further 3D volumetric and morphometric studies with multiple fetal subjects.

摘要

利用磁共振(MR)对人体胎儿进行成像,是对胎儿期正常和异常脑发育进行定量研究的重要工具。然而,由于胎儿和成人脑部之间的组织类型、组织特性和组织分布存在根本差异,为成人脑部解剖结构开发的自动组织分割技术并不适用于这些数据。本文介绍了一种基于图谱的自动分割方法,可对从临床胎儿脑部磁共振扫描重建的运动校正 3D 容积中,对个别组织类型进行分割。为了生成解剖学上正确的自动分割,我们创建了一组准确的手动勾画,并构建了一个包含发育中的灰质和白质以及暂时性组织类型(如生发基质)的胎儿期 3D 统计组织分布图谱。概率图谱与无偏平均形状和强度模板相关联,用于将新的主体图像注册到图谱空间。对一组 14 例胎儿磁共振扫描(20.57-22.86 周胎龄)进行的组织标记全脑 3D 验证表明,这种基于图谱的 EM 分割方法可实现胎儿脑内主要组织类型的一致性高 DSC 性能。这项工作表明,可以从临床磁共振成像中自动推导出可靠的大脑发育测量值,并为具有多个胎儿对象的进一步 3D 体积和形态计量学研究开辟了可能性。

相似文献

6
A spatio-temporal atlas of the human fetal brain with application to tissue segmentation.用于组织分割的人类胎儿脑时空图谱
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):289-96. doi: 10.1007/978-3-642-04268-3_36.
7
Brain volume estimation from post-mortem newborn and fetal MRI.通过死后新生儿和胎儿磁共振成像估计脑容量
Neuroimage Clin. 2014 Oct 23;6:438-44. doi: 10.1016/j.nicl.2014.10.007. eCollection 2014.
10
Robust whole-brain segmentation: application to traumatic brain injury.稳健的全脑分割:在创伤性脑损伤中的应用。
Med Image Anal. 2015 Apr;21(1):40-58. doi: 10.1016/j.media.2014.12.003. Epub 2014 Dec 24.

引用本文的文献

5
Semi-automatic segmentation of the fetal brain from magnetic resonance imaging.基于磁共振成像的胎儿脑部半自动分割
Front Neurosci. 2022 Nov 11;16:1027084. doi: 10.3389/fnins.2022.1027084. eCollection 2022.
6
Diffusion Tensor Based White Matter Tract Atlases for Pediatric Populations.基于扩散张量的儿科白质纤维束图谱
Front Neurosci. 2022 Mar 23;16:806268. doi: 10.3389/fnins.2022.806268. eCollection 2022.

本文引用的文献

1
A spatio-temporal atlas of the human fetal brain with application to tissue segmentation.用于组织分割的人类胎儿脑时空图谱
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):289-96. doi: 10.1007/978-3-642-04268-3_36.
7
Adaptive segmentation of MRI data.MRI 数据的自适应分割。
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
9
Segmentation of brain MRI in young children.幼儿脑部磁共振成像的分割
Acad Radiol. 2007 Nov;14(11):1350-66. doi: 10.1016/j.acra.2007.07.020.
10
Automatic segmentation and reconstruction of the cortex from neonatal MRI.从新生儿磁共振成像中自动分割和重建皮质。
Neuroimage. 2007 Nov 15;38(3):461-77. doi: 10.1016/j.neuroimage.2007.07.030. Epub 2007 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验