Suppr超能文献

胎儿脑磁共振强度、组织概率和形态的时空图谱及其在分割中的应用。

A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation.

机构信息

Biomedical Image Computing Group, University of California San Francisco, San Francisco, CA 94143, USA.

出版信息

Neuroimage. 2010 Nov 1;53(2):460-70. doi: 10.1016/j.neuroimage.2010.06.054. Epub 2010 Jun 30.

Abstract

Modeling and analysis of MR images of the developing human brain is a challenge due to rapid changes in brain morphology and morphometry. We present an approach to the construction of a spatiotemporal atlas of the fetal brain with temporal models of MR intensity, tissue probability and shape changes. This spatiotemporal model is created from a set of reconstructed MR images of fetal subjects with different gestational ages. Groupwise registration of manual segmentations and voxelwise nonlinear modeling allow us to capture the appearance, disappearance and spatial variation of brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific MR templates and tissue probability maps and use them to initialize automatic tissue delineation in new MR images. The choice of model parameters and the final performance are evaluated using clinical MR scans of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Experimental results indicate that quadratic temporal models can correctly capture growth-related changes in the fetal brain anatomy and provide improvement in accuracy of atlas-based tissue segmentation.

摘要

由于人脑形态和形态测量学的快速变化,对发育中人类大脑的磁共振成像进行建模和分析是一项挑战。我们提出了一种构建胎儿大脑时空图谱的方法,该方法使用磁共振强度、组织概率和形状变化的时间模型。这个时空模型是由一组具有不同胎龄的胎儿受试者的重建磁共振图像创建的。手动分割的分组配准和体素非线性建模允许我们随时间捕获脑结构的出现、消失和空间变化。将该模型应用于基于图谱的分割,我们生成特定年龄的磁共振模板和组织概率图,并将其用于初始化新磁共振图像中的自动组织描绘。使用胎龄为 20.57 至 24.71 周的年轻胎儿的临床磁共振扫描评估模型参数的选择和最终性能。实验结果表明,二次时间模型可以正确捕获胎儿大脑解剖结构的生长相关变化,并提高基于图谱的组织分割的准确性。

相似文献

2
A spatio-temporal atlas of the human fetal brain with application to tissue segmentation.用于组织分割的人类胎儿脑时空图谱
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):289-96. doi: 10.1007/978-3-642-04268-3_36.

引用本文的文献

3
4
Fetal brain MRI atlases and datasets: A review.胎儿脑 MRI 图谱和数据集:综述。
Neuroimage. 2024 Apr 15;292:120603. doi: 10.1016/j.neuroimage.2024.120603. Epub 2024 Apr 6.
9
The nnU-Net based method for automatic segmenting fetal brain tissues.基于nnU-Net的胎儿脑组织自动分割方法。
Health Inf Sci Syst. 2023 Mar 27;11(1):17. doi: 10.1007/s13755-023-00220-3. eCollection 2023 Dec.

本文引用的文献

2
MR imaging of the fetal brain.胎儿脑的磁共振成像。
Pediatr Radiol. 2010 Jan;40(1):68-81. doi: 10.1007/s00247-009-1459-3. Epub 2009 Nov 24.
4
Automatic segmentation of newborn brain MRI.新生儿脑部磁共振成像的自动分割
Neuroimage. 2009 Aug 15;47(2):564-72. doi: 10.1016/j.neuroimage.2009.04.068. Epub 2009 May 3.
5
The effect of template choice on morphometric analysis of pediatric brain data.模板选择对儿科脑数据形态计量分析的影响。
Neuroimage. 2009 Apr 15;45(3):769-77. doi: 10.1016/j.neuroimage.2008.12.046. Epub 2009 Jan 6.
8
Segmentation of brain MRI in young children.幼儿脑部磁共振成像的分割
Acad Radiol. 2007 Nov;14(11):1350-66. doi: 10.1016/j.acra.2007.07.020.
9
Automatic segmentation and reconstruction of the cortex from neonatal MRI.从新生儿磁共振成像中自动分割和重建皮质。
Neuroimage. 2007 Nov 15;38(3):461-77. doi: 10.1016/j.neuroimage.2007.07.030. Epub 2007 Aug 7.
10
Using the logarithm of odds to define a vector space on probabilistic atlases.使用对数优势在概率图谱上定义向量空间。
Med Image Anal. 2007 Oct;11(5):465-77. doi: 10.1016/j.media.2007.06.003. Epub 2007 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验