Hong Jinwoo, Yun Hyuk Jin, Park Gilsoon, Kim Seonggyu, Laurentys Cynthia T, Siqueira Leticia C, Tarui Tomo, Rollins Caitlin K, Ortinau Cynthia M, Grant P Ellen, Lee Jong-Min, Im Kiho
Department of Electronic Engineering, Hanyang University, Seoul, South Korea.
Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
Front Neurosci. 2020 Dec 2;14:591683. doi: 10.3389/fnins.2020.591683. eCollection 2020.
Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development . However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation ( > 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.
胎儿磁共振成像(MRI)有潜力通过提供皮质板(CP)发育的定量信息来推进我们对人类大脑发育的理解。然而,对于可靠的皮质体积和脑沟折叠定量分析,CP的准确自动分割至关重要。在本研究中,我们提出了一种用于CP自动分割的全卷积神经网络。我们开发了一种新颖的混合损失函数来提高分割精度,并采用多视图(轴向、冠状和矢状)聚合与测试时增强方法,利用三维(3D)信息和多个预测来减少误差。我们使用52幅胎儿脑MR图像(妊娠22.9 - 31.4周)的十折交叉验证来评估我们提出的方法。所提出的方法在左右两侧分别获得了0.907±0.027和0.906±0.031的Dice系数,以及0.182±0.058毫米和0.185±0.069毫米的平均表面距离误差。此外,自动分割生成的左右CP体积、表面积和全局平均曲率与手动分割生成的值显示出高度相关性(>0.941)。我们还证明,所提出的混合损失函数以及多视图聚合和测试时增强的组合显著提高了CP分割精度。我们提出的分割方法将有助于对胎儿脑中皮质结构进行自动且可靠的定量分析。