Suppr超能文献

基于局部马尔可夫随机场的脑 MRI 组织分类。

Brain MRI tissue classification based on local Markov random fields.

机构信息

Department of Signal Processing, Tampere University of Technology, P.O. Box 553, FIN-33101, Finland.

出版信息

Magn Reson Imaging. 2010 May;28(4):557-73. doi: 10.1016/j.mri.2009.12.012. Epub 2010 Jan 27.

Abstract

A new method for tissue classification of brain magnetic resonance images (MRI) of the brain is proposed. The method is based on local image models where each models the image content in a subset of the image domain. With this local modeling approach, the assumption that tissue types have the same characteristics over the brain needs not to be evoked. This is important because tissue type characteristics, such as T1 and T2 relaxation times and proton density, vary across the individual brain and the proposed method offers improved protection against intensity non-uniformity artifacts that can hamper automatic tissue classification methods in brain MRI. A framework in which local models for tissue intensities and Markov Random Field (MRF) priors are combined into a global probabilistic image model is introduced. This global model will be an inhomogeneous MRF and it can be solved by standard algorithms such as iterative conditional modes. The division of the whole image domain into local brain regions possibly having different intensity statistics is realized via sub-volume probabilistic atlases. Finally, the parameters for the local intensity models are obtained without supervision by maximizing the weighted likelihood of a certain finite mixture model. For the maximization task, a novel genetic algorithm almost free of initialization dependency is applied. The algorithm is tested on both simulated and real brain MR images. The experiments confirm that the new method offers a useful improvement of the tissue classification accuracy when the basic tissue characteristics vary across the brain and the noise level of the images is reasonable. The method also offers better protection against intensity non-uniformity artifact than the corresponding method based on a global (whole image) modeling scheme.

摘要

提出了一种新的脑磁共振成像(MRI)组织分类方法。该方法基于局部图像模型,每个模型在图像域的子集内对图像内容进行建模。通过这种局部建模方法,不需要假设组织类型在整个大脑中具有相同的特征。这很重要,因为组织类型的特征,如 T1 和 T2 弛豫时间和质子密度,在个体大脑中是不同的,而所提出的方法提供了对强度非均匀伪影的改进保护,这些伪影可能会妨碍脑 MRI 中的自动组织分类方法。引入了一种将组织强度的局部模型和马尔可夫随机场(MRF)先验结合到全局概率图像模型中的框架。这个全局模型将是一个非均匀的 MRF,可以通过迭代条件模式等标准算法来求解。通过子体积概率图谱,将整个图像域划分为可能具有不同强度统计数据的局部脑区。最后,通过最大化特定有限混合模型的加权似然来获得局部强度模型的参数,而无需监督。对于最大化任务,应用了一种新颖的几乎没有初始化依赖性的遗传算法。该算法在模拟和真实脑 MRI 图像上进行了测试。实验证实,当基本组织特征在大脑中变化且图像噪声水平合理时,该新方法可显著提高组织分类准确性。与基于全局(整个图像)建模方案的相应方法相比,该方法还提供了对强度非均匀伪影更好的保护。

相似文献

1
Brain MRI tissue classification based on local Markov random fields.
Magn Reson Imaging. 2010 May;28(4):557-73. doi: 10.1016/j.mri.2009.12.012. Epub 2010 Jan 27.
2
Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification.
Med Image Anal. 2006 Oct;10(5):726-39. doi: 10.1016/j.media.2006.07.002. Epub 2006 Aug 21.
3
Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
Med Image Anal. 2008 Dec;12(6):639-52. doi: 10.1016/j.media.2008.03.001. Epub 2008 Mar 17.
4
Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):883-90. doi: 10.1007/978-3-540-75757-3_107.
5
A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
Comput Assist Surg (Abingdon). 2017 Dec;22(sup1):200-211. doi: 10.1080/24699322.2017.1389398. Epub 2017 Oct 26.
6
Automated segmentation of mouse brain images using extended MRF.
Neuroimage. 2009 Jul 1;46(3):717-25. doi: 10.1016/j.neuroimage.2009.02.012. Epub 2009 Feb 21.
7
A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):67-75. doi: 10.1007/978-3-540-85988-8_9.
8
A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.
Phys Med Biol. 2011 Jun 7;56(11):3269-300. doi: 10.1088/0031-9155/56/11/007. Epub 2011 May 10.
9
Adaptive partial volume classification of MRI data.
Phys Med Biol. 2008 Oct 21;53(20):5577-94. doi: 10.1088/0031-9155/53/20/001. Epub 2008 Sep 17.
10
Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
Med Image Anal. 2011 Apr;15(2):267-82. doi: 10.1016/j.media.2010.12.003. Epub 2010 Dec 25.

引用本文的文献

1
Texture Analysis of Enhanced MRI and Pathological Slides Predicts EGFR Mutation Status in Breast Cancer.
Biomed Res Int. 2022 May 26;2022:1376659. doi: 10.1155/2022/1376659. eCollection 2022.
3
Multi-atlas active contour segmentation method using template optimization algorithm.
BMC Med Imaging. 2019 May 24;19(1):42. doi: 10.1186/s12880-019-0340-6.
4
Three-dimensional brain magnetic resonance imaging segmentation via knowledge-driven decision theory.
J Med Imaging (Bellingham). 2014 Oct;1(3):034001. doi: 10.1117/1.JMI.1.3.034001. Epub 2014 Oct 1.
5
Fully automated whole-head segmentation with improved smoothness and continuity, with theory reviewed.
PLoS One. 2015 May 18;10(5):e0125477. doi: 10.1371/journal.pone.0125477. eCollection 2015.
8
Irritable bowel syndrome in female patients is associated with alterations in structural brain networks.
Pain. 2014 Jan;155(1):137-149. doi: 10.1016/j.pain.2013.09.020. Epub 2013 Sep 26.
10
Structural brain atlases: design, rationale, and applications in normal and pathological cohorts.
J Alzheimers Dis. 2012;31 Suppl 3(0 3):S169-88. doi: 10.3233/JAD-2012-120412.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
2
SOCR: Statistics Online Computational Resource.
J Stat Softw. 2006 Oct 1;16(11). doi: 10.18637/jss.v016.i11.
3
Comparison of tissue segmentation algorithms in neuroimage analysis software tools.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3924-8. doi: 10.1109/IEMBS.2008.4650068.
4
A comparative study of energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Trans Pattern Anal Mach Intell. 2008 Jun;30(6):1068-80. doi: 10.1109/TPAMI.2007.70844.
5
Robust MRI brain tissue parameter estimation by multistage outlier rejection.
Magn Reson Med. 2008 Apr;59(4):866-73. doi: 10.1002/mrm.21521.
6
Statistical models of partial volume effect.
IEEE Trans Image Process. 1995;4(11):1531-40. doi: 10.1109/83.469934.
7
Partial volume tissue classification of multichannel magnetic resonance images-a mixel model.
IEEE Trans Med Imaging. 1991;10(3):395-407. doi: 10.1109/42.97590.
8
Adaptive segmentation of MRI data.
IEEE Trans Med Imaging. 1996;15(4):429-42. doi: 10.1109/42.511747.
9
Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images.
IEEE Trans Med Imaging. 1995;14(3):442-53. doi: 10.1109/42.414608.
10
Genetic algorithms for finite mixture model based voxel classification in neuroimaging.
IEEE Trans Med Imaging. 2007 May;26(5):696-711. doi: 10.1109/TMI.2007.895453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验