Department of Industrial Electronics, University of Minho, Guimaraes, Portugal.
Med Biol Eng Comput. 2010 Apr;48(4):331-41. doi: 10.1007/s11517-010-0578-1. Epub 2010 Jan 29.
Noninvasive brain-computer interfaces (BCI) translate subject's electroencephalogram (EEG) features into device commands. Large feature sets should be down-selected for efficient feature translation. This work proposes two different feature down-selection algorithms for BCI: (a) a sequential forward selection; and (b) an across-group variance. Power rar ratios (PRs) were extracted from the EEG data for movement imagery discrimination. Event-related potentials (ERPs) were employed in the discrimination of cue-evoked responses. While center-out arrows, commonly used in calibration sessions, cued the subjects in the first experiment (for both PR and ERP analyses), less stimulating arrows that were centered in the visual field were employed in the second experiment (for ERP analysis). The proposed algorithms outperformed other three popular feature selection algorithms in movement imagery discrimination. In the first experiment, both algorithms achieved classification errors as low as 12.5% reducing the feature set dimensionality by more than 90%. The classification accuracy of ERPs dropped in the second experiment since centered cues reduced the amplitude of cue-evoked ERPs. The two proposed algorithms effectively reduced feature dimensionality while increasing movement imagery discrimination and detected cue-evoked ERPs that reflect subject attention.
非侵入式脑机接口 (BCI) 将受试者的脑电图 (EEG) 特征转换为设备命令。应从大量特征集中选择有效特征进行转换。本研究提出了两种用于 BCI 的不同特征选择算法:(a) 顺序前向选择;和 (b) 跨组方差。运动想象辨别时从 EEG 数据中提取功率比率 (PR)。事件相关电位 (ERP) 用于辨别提示诱发反应。在第一个实验中(用于 PR 和 ERP 分析),箭头的中心向外提示被用于引导受试者,而在第二个实验中(用于 ERP 分析),使用了位于视野中心的刺激较小的箭头。所提出的算法在运动想象辨别中优于其他三种常用的特征选择算法。在第一个实验中,两种算法的分类错误率均低至 12.5%,将特征集的维数降低了 90%以上。由于中心提示降低了提示诱发 ERP 的幅度,第二个实验中 ERP 的分类精度有所下降。所提出的两种算法有效地降低了特征的维度,同时提高了运动想象的辨别能力,并检测到反映受试者注意力的提示诱发 ERP。