Suppr超能文献

运动想象辨别和注意力检测的特征选择。

Feature selection on movement imagery discrimination and attention detection.

机构信息

Department of Industrial Electronics, University of Minho, Guimaraes, Portugal.

出版信息

Med Biol Eng Comput. 2010 Apr;48(4):331-41. doi: 10.1007/s11517-010-0578-1. Epub 2010 Jan 29.

Abstract

Noninvasive brain-computer interfaces (BCI) translate subject's electroencephalogram (EEG) features into device commands. Large feature sets should be down-selected for efficient feature translation. This work proposes two different feature down-selection algorithms for BCI: (a) a sequential forward selection; and (b) an across-group variance. Power rar ratios (PRs) were extracted from the EEG data for movement imagery discrimination. Event-related potentials (ERPs) were employed in the discrimination of cue-evoked responses. While center-out arrows, commonly used in calibration sessions, cued the subjects in the first experiment (for both PR and ERP analyses), less stimulating arrows that were centered in the visual field were employed in the second experiment (for ERP analysis). The proposed algorithms outperformed other three popular feature selection algorithms in movement imagery discrimination. In the first experiment, both algorithms achieved classification errors as low as 12.5% reducing the feature set dimensionality by more than 90%. The classification accuracy of ERPs dropped in the second experiment since centered cues reduced the amplitude of cue-evoked ERPs. The two proposed algorithms effectively reduced feature dimensionality while increasing movement imagery discrimination and detected cue-evoked ERPs that reflect subject attention.

摘要

非侵入式脑机接口 (BCI) 将受试者的脑电图 (EEG) 特征转换为设备命令。应从大量特征集中选择有效特征进行转换。本研究提出了两种用于 BCI 的不同特征选择算法:(a) 顺序前向选择;和 (b) 跨组方差。运动想象辨别时从 EEG 数据中提取功率比率 (PR)。事件相关电位 (ERP) 用于辨别提示诱发反应。在第一个实验中(用于 PR 和 ERP 分析),箭头的中心向外提示被用于引导受试者,而在第二个实验中(用于 ERP 分析),使用了位于视野中心的刺激较小的箭头。所提出的算法在运动想象辨别中优于其他三种常用的特征选择算法。在第一个实验中,两种算法的分类错误率均低至 12.5%,将特征集的维数降低了 90%以上。由于中心提示降低了提示诱发 ERP 的幅度,第二个实验中 ERP 的分类精度有所下降。所提出的两种算法有效地降低了特征的维度,同时提高了运动想象的辨别能力,并检测到反映受试者注意力的提示诱发 ERP。

相似文献

1
Feature selection on movement imagery discrimination and attention detection.
Med Biol Eng Comput. 2010 Apr;48(4):331-41. doi: 10.1007/s11517-010-0578-1. Epub 2010 Jan 29.
2
The use of EEG modifications due to motor imagery for brain-computer interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):131-3. doi: 10.1109/TNSRE.2003.814455.
3
Visual gate for brain-computer interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:532-5. doi: 10.1109/IEMBS.2009.5333496.
4
Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
J Neural Eng. 2006 Sep;3(3):235-44. doi: 10.1088/1741-2560/3/3/006. Epub 2006 Jul 20.
5
EEG-based classification of imaginary left and right foot movements using beta rebound.
Clin Neurophysiol. 2013 Nov;124(11):2153-60. doi: 10.1016/j.clinph.2013.05.006. Epub 2013 Jun 10.
6
Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):166-71. doi: 10.1109/TNSRE.2005.847386.
7
Optimization of electrode channels in Brain Computer Interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6477-80. doi: 10.1109/IEMBS.2009.5333585.
8
A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
J Neural Eng. 2008 Mar;5(1):24-35. doi: 10.1088/1741-2560/5/1/003. Epub 2007 Dec 11.
9
Discrimination of left and right leg motor imagery for brain-computer interfaces.
Med Biol Eng Comput. 2010 Apr;48(4):343-50. doi: 10.1007/s11517-010-0579-0. Epub 2010 Feb 9.
10
Robust detection of event-related potentials in a user-voluntary short-term imagery task.
PLoS One. 2019 Dec 26;14(12):e0226236. doi: 10.1371/journal.pone.0226236. eCollection 2019.

引用本文的文献

2
Fuzzy clustering-based feature extraction method for mental task classification.
Brain Inform. 2017 Jun;4(2):135-145. doi: 10.1007/s40708-016-0056-0. Epub 2016 Sep 3.
4
Prediction of O-glycosylation sites based on multi-scale composition of amino acids and feature selection.
Med Biol Eng Comput. 2015 Jun;53(6):535-44. doi: 10.1007/s11517-015-1268-9. Epub 2015 Mar 10.
5
Feature selection and classification of leukocytes using random forest.
Med Biol Eng Comput. 2014 Dec;52(12):1041-52. doi: 10.1007/s11517-014-1200-8. Epub 2014 Oct 5.
6
Electrode subset selection methods for an EEG-based P300 brain-computer interface.
Disabil Rehabil Assist Technol. 2015 May;10(3):216-20. doi: 10.3109/17483107.2014.884174. Epub 2014 Feb 10.
7
Brain computer interfaces, a review.
Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31.
8
Targeting an efficient target-to-target interval for P300 speller brain-computer interfaces.
Med Biol Eng Comput. 2012 Mar;50(3):289-96. doi: 10.1007/s11517-012-0868-x. Epub 2012 Feb 18.
9
Robust extraction of P300 using constrained ICA for BCI applications.
Med Biol Eng Comput. 2012 Mar;50(3):231-41. doi: 10.1007/s11517-012-0861-4. Epub 2012 Jan 17.
10
A comparison of univariate, vector, bilinear autoregressive, and band power features for brain-computer interfaces.
Med Biol Eng Comput. 2011 Nov;49(11):1337-46. doi: 10.1007/s11517-011-0828-x. Epub 2011 Sep 25.

本文引用的文献

1
Independent component analysis: comparison of algorithms for the investigation of surface electrical brain activity.
Med Biol Eng Comput. 2009 Apr;47(4):413-23. doi: 10.1007/s11517-009-0452-1. Epub 2009 Feb 13.
2
A brain-computer interface using motion-onset visual evoked potential.
J Neural Eng. 2008 Dec;5(4):477-85. doi: 10.1088/1741-2560/5/4/011. Epub 2008 Nov 18.
3
Brain computer interface using flash onset and offset visual evoked potentials.
Clin Neurophysiol. 2008 Mar;119(3):605-616. doi: 10.1016/j.clinph.2007.11.013.
4
Toward enhanced P300 speller performance.
J Neurosci Methods. 2008 Jan 15;167(1):15-21. doi: 10.1016/j.jneumeth.2007.07.017. Epub 2007 Aug 1.
5
Combining spatial filters for the classification of single-trial EEG in a finger movement task.
IEEE Trans Biomed Eng. 2007 May;54(5):821-31. doi: 10.1109/TBME.2006.889206.
6
A comparison approach toward finding the best feature and classifier in cue-based BCI.
Med Biol Eng Comput. 2007 Apr;45(4):403-12. doi: 10.1007/s11517-007-0169-y. Epub 2007 Feb 23.
7
Automatic user customization for improving the performance of a self-paced brain interface system.
Med Biol Eng Comput. 2006 Dec;44(12):1093-104. doi: 10.1007/s11517-006-0125-2. Epub 2006 Nov 17.
8
Adaptive feature extraction for EEG signal classification.
Med Biol Eng Comput. 2006 Oct;44(10):931-5. doi: 10.1007/s11517-006-0107-4. Epub 2006 Sep 12.
9
Dangerous phase.
Neuroinformatics. 2005;3(4):315-8. doi: 10.1385/NI:3:4:315.
10
Neuronal spatiotemporal pattern discrimination: the dynamical evolution of seizures.
Neuroimage. 2005 Dec;28(4):1043-55. doi: 10.1016/j.neuroimage.2005.06.059. Epub 2005 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验