美国外科医师学会国家手术质量改进计划中的缺失数据并非随机缺失:对质量评估的影响和潜在影响。

Missing data in the American College of Surgeons National Surgical Quality Improvement Program are not missing at random: implications and potential impact on quality assessments.

机构信息

Olin Business School, Washington University in St Louis, St Louis, MO, USA.

出版信息

J Am Coll Surg. 2010 Feb;210(2):125-139.e2. doi: 10.1016/j.jamcollsurg.2009.10.021.

Abstract

BACKGROUND

Studying risk-adjusted outcomes in health care relies on statistical approaches to handling missing data. The American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) provides risk-adjusted assessments of surgical programs, traditionally imputing certain missing data points using a single round of multivariable imputation. Such imputation assumes that data are missing at random-without systematic bias-and does not incorporate estimation uncertainty. Alternative approaches, including using multiple imputation to incorporate uncertainty or using an indicator of missingness, can enhance robustness of evaluations.

STUDY DESIGN

One year of de-identified data from the ACS NSQIP, representing 117 institutions and 106,113 patients, was analyzed. Using albumin variables as the missing data modeled, several imputation/adjustment models were compared, including the traditional NSQIP imputation, a new single imputation, a multiple imputation, and use of a missing indicator.

RESULTS

Coefficients for albumin values changed under new single imputation and multiple imputation approaches. Multiple imputation resulted in increased standard errors, as expected. An indicator of missingness was highly explanatory, disproving the missing-at-random assumption. The effects of changes in approach differed for different outcomes, such as mortality and morbidity, and effects were greatest in smaller datasets. However, ultimate changes in patient risk assessment and institutional assessment were minimal.

CONCLUSIONS

Newer statistical approaches to modeling missing (albumin) values result in noticeable statistical distinctions, including improved incorporation of imputation uncertainty. In addition, the missing-at-random assumption is incorrect for albumin. Despite these findings, effects on institutional assessments are small. Although effects can be most important with smaller data-sets, the current approach to imputing missing values in the ACS NSQIP appears reasonably robust.

摘要

背景

在医疗保健中研究风险调整后的结果依赖于处理缺失数据的统计方法。美国外科医师学院国家外科质量改进计划(ACS NSQIP)提供了手术计划的风险调整评估,传统上使用单轮多变量插补法来插补某些缺失数据点。这种插补假设数据是随机缺失的,没有系统偏差,并且不包含估计不确定性。替代方法,包括使用多次插补来包含不确定性或使用缺失指标,可以增强评估的稳健性。

研究设计

分析了 ACS NSQIP 的一年去识别数据,代表了 117 个机构和 106113 名患者。使用白蛋白变量作为缺失数据建模,比较了几种插补/调整模型,包括传统的 NSQIP 插补、新的单插补、多次插补和使用缺失指标。

结果

在新的单插补和多次插补方法下,白蛋白值的系数发生了变化。正如预期的那样,多次插补导致标准误差增加。缺失指标具有很强的解释性,证明了缺失是随机的假设是错误的。不同的结局,如死亡率和发病率,改变方法的效果不同,在较小的数据集上效果最大。然而,患者风险评估和机构评估的最终变化很小。

结论

用于模拟缺失(白蛋白)值的新统计方法会产生明显的统计差异,包括改进了插补不确定性的纳入。此外,白蛋白缺失的随机假设是不正确的。尽管存在这些发现,但对机构评估的影响很小。尽管这些影响在较小的数据集中可能最为重要,但 ACS NSQIP 中目前的缺失值插补方法似乎相当稳健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索