Suppr超能文献

利用机器学习进行个性化手术输血风险预测,以指导术前血型和筛查订单。

Personalized Surgical Transfusion Risk Prediction Using Machine Learning to Guide Preoperative Type and Screen Orders.

机构信息

Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri.

Department of Computer Science and Engineering, Washington University School of Medicine, St. Louis, Missouri.

出版信息

Anesthesiology. 2022 Jul 1;137(1):55-66. doi: 10.1097/ALN.0000000000004139.

Abstract

BACKGROUND

Accurate estimation of surgical transfusion risk is essential for efficient allocation of blood bank resources and for other aspects of anesthetic planning. This study hypothesized that a machine learning model incorporating both surgery- and patient-specific variables would outperform the traditional approach that uses only procedure-specific information, allowing for more efficient allocation of preoperative type and screen orders.

METHODS

The American College of Surgeons National Surgical Quality Improvement Program Participant Use File was used to train four machine learning models to predict the likelihood of red cell transfusion using surgery-specific and patient-specific variables. A baseline model using only procedure-specific information was created for comparison. The models were trained on surgical encounters that occurred at 722 hospitals in 2016 through 2018. The models were internally validated on surgical cases that occurred at 719 hospitals in 2019. Generalizability of the best-performing model was assessed by external validation on surgical cases occurring at a single institution in 2020.

RESULTS

Transfusion prevalence was 2.4% (73,313 of 3,049,617), 2.2% (23,205 of 1,076,441), and 6.7% (1,104 of 16,053) across the training, internal validation, and external validation cohorts, respectively. The gradient boosting machine outperformed the baseline model and was the best- performing model. At a fixed 96% sensitivity, this model had a positive predictive value of 0.06 and 0.21 and recommended type and screens for 36% and 30% of the patients in internal and external validation, respectively. By comparison, the baseline model at the same sensitivity had a positive predictive value of 0.04 and 0.144 and recommended type and screens for 57% and 45% of the patients in internal and external validation, respectively. The most important predictor variables were overall procedure-specific transfusion rate and preoperative hematocrit.

CONCLUSIONS

A personalized transfusion risk prediction model was created using both surgery- and patient-specific variables to guide preoperative type and screen orders and showed better performance compared to the traditional procedure-centric approach.

摘要

背景

准确估计手术输血风险对于有效分配血库资源和麻醉计划的其他方面至关重要。本研究假设,纳入手术和患者特定变量的机器学习模型将优于仅使用手术特定信息的传统方法,从而更有效地分配术前血型和交叉配血订单。

方法

使用美国外科医师学会国家手术质量改进计划参与者使用文件,训练四个机器学习模型,使用手术特定和患者特定变量预测红细胞输血的可能性。创建了一个仅使用手术特定信息的基线模型进行比较。模型在 2016 年至 2018 年期间在 722 家医院进行的手术中进行了训练。在 2019 年在 719 家医院进行的手术中对模型进行了内部验证。通过在 2020 年在一家单一机构进行的手术中进行外部验证来评估表现最佳的模型的泛化能力。

结果

在训练、内部验证和外部验证队列中,输血发生率分别为 2.4%(73,313/3,049,617)、2.2%(23,205/1,076,441)和 6.7%(1,104/16,053)。梯度提升机优于基线模型,是表现最佳的模型。在固定的 96%敏感性下,该模型的阳性预测值分别为 0.06 和 0.21,在内部和外部验证中分别为 36%和 30%的患者推荐进行血型和交叉配血。相比之下,在相同敏感性下,基线模型的阳性预测值分别为 0.04 和 0.144,在内部和外部验证中分别为 57%和 45%的患者推荐进行血型和交叉配血。最重要的预测变量是总体手术特定输血率和术前血细胞比容。

结论

使用手术和患者特定变量创建了一个个性化的输血风险预测模型,以指导术前血型和交叉配血订单,并与传统的以手术为中心的方法相比表现更好。

相似文献

4

引用本文的文献

9
Machine learning in transfusion medicine: A scoping review.输血医学中的机器学习:一项范围综述。
Transfusion. 2024 Jan;64(1):162-184. doi: 10.1111/trf.17582. Epub 2023 Nov 10.

本文引用的文献

2
Precision medicine in anesthesiology.麻醉学中的精准医学。
Int Anesthesiol Clin. 2020 Fall;58(4):17-22. doi: 10.1097/AIA.0000000000000297.
5
Machine learning-based prediction of transfusion.基于机器学习的输血预测。
Transfusion. 2020 Sep;60(9):1977-1986. doi: 10.1111/trf.15935. Epub 2020 Jun 28.
7
Prediction of perioperative transfusions using an artificial neural network.使用人工神经网络预测围手术期输血。
PLoS One. 2020 Feb 24;15(2):e0229450. doi: 10.1371/journal.pone.0229450. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验