Suppr超能文献

应用可解释机器学习对外周动脉疾病患者的 30 天手术相关死亡率和 30 天非计划性再入院进行风险分层。

Risk stratification with explainable machine learning for 30-day procedure-related mortality and 30-day unplanned readmission in patients with peripheral arterial disease.

机构信息

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.

出版信息

PLoS One. 2022 Nov 21;17(11):e0277507. doi: 10.1371/journal.pone.0277507. eCollection 2022.

Abstract

Predicting 30-day procedure-related mortality risk and 30-day unplanned readmission in patients undergoing lower extremity endovascular interventions for peripheral artery disease (PAD) may assist in improving patient outcomes. Risk prediction of 30-day mortality can help clinicians identify treatment plans to reduce the risk of death, and prediction of 30-day unplanned readmission may improve outcomes by identifying patients who may benefit from readmission prevention strategies. The goal of this study is to develop machine learning models to stratify risk of 30-day procedure-related mortality and 30-day unplanned readmission in patients undergoing lower extremity infra-inguinal endovascular interventions. We used a cohort of 14,444 cases from the American College of Surgeons National Surgical Quality Improvement Program database. For each outcome, we developed and evaluated multiple machine learning models, including Support Vector Machines, Multilayer Perceptrons, and Gradient Boosting Machines, and selected a random forest as the best-performing model for both outcomes. Our 30-day procedure-related mortality model achieved an AUC of 0.75 (95% CI: 0.71-0.79) and our 30-day unplanned readmission model achieved an AUC of 0.68 (95% CI: 0.67-0.71). Stratification of the test set by race (white and non-white), sex (male and female), and age (≥65 years and <65 years) and subsequent evaluation of demographic parity by AUC shows that both models perform equally well across race, sex, and age groups. We interpret the model globally and locally using Gini impurity and SHapley Additive exPlanations (SHAP). Using the top five predictors for death and mortality, we demonstrate differences in survival for subgroups stratified by these predictors, which underscores the utility of our model.

摘要

预测外周动脉疾病(PAD)患者下肢血管腔内干预后 30 天与手术相关的死亡率和 30 天内非计划性再入院的风险,可能有助于改善患者的预后。30 天死亡率的风险预测可以帮助临床医生确定治疗方案,降低死亡风险,而 30 天内非计划性再入院的预测可以通过识别可能受益于再入院预防策略的患者来改善预后。本研究的目的是开发机器学习模型,对下肢血管腔内 infra-inguinal 干预患者的 30 天与手术相关的死亡率和 30 天内非计划性再入院的风险进行分层。我们使用了美国外科医师学会国家手术质量改进计划数据库中的 14444 例患者的队列。对于每个结果,我们开发并评估了多个机器学习模型,包括支持向量机、多层感知机和梯度提升机,并选择随机森林作为两个结果的最佳表现模型。我们的 30 天与手术相关的死亡率模型的 AUC 为 0.75(95%置信区间:0.71-0.79),我们的 30 天内非计划性再入院模型的 AUC 为 0.68(95%置信区间:0.67-0.71)。通过 AUC 按种族(白人和非白人)、性别(男性和女性)和年龄(≥65 岁和<65 岁)对测试集进行分层,并对人口统计学均等性进行评估,结果表明这两个模型在种族、性别和年龄组之间的表现相同。我们使用基尼不纯度和 SHapley Additive exPlanations(SHAP)对模型进行全局和局部解释。使用死亡和死亡率的前五个预测因子,我们展示了按这些预测因子分层的亚组的生存差异,这突显了我们模型的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b20/9678279/7d50af305c3b/pone.0277507.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验