Suppr超能文献

草酸辅酶 A 还原为乙醛酸是甲基杆菌 AM1 中草酸盐同化的首选途径。

Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1.

机构信息

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

出版信息

J Bacteriol. 2012 Jun;194(12):3144-55. doi: 10.1128/JB.00288-12. Epub 2012 Apr 6.

Abstract

Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.

摘要

草酸代谢由在系统发育上多样化的生物体进行,包括甲基杆菌属(Methylobacterium)的扩展甲基杆菌(Methylobacterium extorquens)AM1。在这里,我们通过蛋白质组学、突变体表征和(13)C 标记实验来研究这种α变形菌在以草酸为生长基质时的中心代谢。我们的结果证实,能量守恒与先前对 M. extorquens AM1 和其他已鉴定的草酸营养细菌的描述一致,通过草酸酰辅酶 A(oxalyl-CoA)脱羧酶和甲酰辅酶 A 转移酶进行,随后通过甲酸脱氢酶氧化为二氧化碳。然而,与其他降解草酸的生物体不同,在 M. extorquens AM1 中,这种碳化合物的同化是通过丝氨酸循环的变体进行的,如下所示:草酸酰辅酶 A 还原为乙醛酸,并转化为甘氨酸,然后与甲叉四氢叶酸缩合,由甲酸衍生而来,形成 C3 单位。最近发现的乙基丙二酰辅酶 A 途径在以草酸为生长基质时起作用,但并非必不可少,表明草酸酰辅酶 A 还原酶足以提供用于生物合成所需的乙醛酸。对一种缺乏草酸酰辅酶 A 合成酶和草酸酰辅酶 A 还原酶的双突变体的分析揭示了一种替代策略,尽管效率较低,但通过一碳中间体同化草酸是可行的。替代过程包括通过四氢叶酸途径同化甲酸以给丝氨酸循环供能,乙基丙二酰辅酶 A 途径用于乙醛酸的再生。我们的结果支持了这样一种观点,即 M. extorquens AM1 具有灵活的中心代谢,具有多种用于 C1 和 C2 底物的同化途径,这可能有助于该生物体快速适应新的底物,并最终在环境条件下共消耗底物。

相似文献

3
The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate.
J Biol Chem. 2012 Jan 2;287(1):757-766. doi: 10.1074/jbc.M111.305219. Epub 2011 Nov 21.
4
Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4846-51. doi: 10.1073/pnas.0810932106. Epub 2009 Mar 4.
5
Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1.
J Bacteriol. 2010 Apr;192(7):1813-23. doi: 10.1128/JB.01166-09. Epub 2010 Jan 29.
6
Microbial growth on oxalate by a route not involving glyoxylate carboligase.
Biochem J. 1970 Jun;118(1):53-9. doi: 10.1042/bj1180053.
7
Ethylmalonyl coenzyme A mutase operates as a metabolic control point in Methylobacterium extorquens AM1.
J Bacteriol. 2015 Feb 15;197(4):727-35. doi: 10.1128/JB.02478-14. Epub 2014 Dec 1.
9
Glyoxylate regeneration pathway in the methylotroph Methylobacterium extorquens AM1.
J Bacteriol. 2002 Mar;184(6):1750-8. doi: 10.1128/JB.184.6.1750-1758.2002.

引用本文的文献

1
Methylobacterium extorquens PA1 utilizes multiple strategies to maintain formaldehyde homeostasis during methylotrophic growth.
PLoS Genet. 2025 Jun 9;21(6):e1011736. doi: 10.1371/journal.pgen.1011736. eCollection 2025 Jun.
3
Biosynthesis of plant hemostatic dencichine in Escherichia coli.
Nat Commun. 2022 Sep 19;13(1):5492. doi: 10.1038/s41467-022-33255-3.
4
Engineering a Highly Efficient Carboligase for Synthetic One-Carbon Metabolism.
ACS Catal. 2021 May 7;11(9):5396-5404. doi: 10.1021/acscatal.1c01237. Epub 2021 Apr 20.
5
Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22452-22461. doi: 10.1073/pnas.2012288117. Epub 2020 Aug 20.
6
Oxalyl-CoA Decarboxylase Enables Nucleophilic One-Carbon Extension of Aldehydes to Chiral α-Hydroxy Acids.
Angew Chem Int Ed Engl. 2020 Mar 27;59(14):5526-5530. doi: 10.1002/anie.201915155. Epub 2020 Feb 11.
7
Designing and Engineering AM1 for Itaconic Acid Production.
Front Microbiol. 2019 May 9;10:1027. doi: 10.3389/fmicb.2019.01027. eCollection 2019.
9
The Response of Strains to Two Soil Fungi and the Potential Role of Oxalate.
Front Microbiol. 2018 May 29;9:989. doi: 10.3389/fmicb.2018.00989. eCollection 2018.
10
Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants.
Front Plant Sci. 2016 Jul 15;7:1042. doi: 10.3389/fpls.2016.01042. eCollection 2016.

本文引用的文献

1
Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice.
ISME J. 2012 Jul;6(7):1378-90. doi: 10.1038/ismej.2011.192. Epub 2011 Dec 22.
2
The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate.
J Biol Chem. 2012 Jan 2;287(1):757-766. doi: 10.1074/jbc.M111.305219. Epub 2011 Nov 21.
4
Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate.
J Bacteriol. 2012 Jan;194(2):225-32. doi: 10.1128/JB.05959-11. Epub 2011 Nov 4.
5
Use of an isothermal microcalorimetry assay to characterize microbial oxalotrophic activity.
FEMS Microbiol Ecol. 2011 Nov;78(2):266-74. doi: 10.1111/j.1574-6941.2011.01158.x. Epub 2011 Jul 14.
6
Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis.
Anal Chem. 2011 Feb 1;83(3):850-5. doi: 10.1021/ac102445r. Epub 2010 Dec 17.
7
Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1.
J Bacteriol. 2010 Apr;192(7):1813-23. doi: 10.1128/JB.01166-09. Epub 2010 Jan 29.
9
On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics.
Bioinformatics. 2010 Feb 1;26(3):363-9. doi: 10.1093/bioinformatics/btp677. Epub 2009 Dec 9.
10
Metabolite profiling uncovers plasmid-induced cobalt limitation under methylotrophic growth conditions.
PLoS One. 2009 Nov 13;4(11):e7831. doi: 10.1371/journal.pone.0007831.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验