Suppr超能文献

骨骼肌产生力的新模型,包含依赖于工作的失活。

A new model for force generation by skeletal muscle, incorporating work-dependent deactivation.

机构信息

Princeton University, Princeton, NJ 08544, USA.

出版信息

J Exp Biol. 2010 Feb 15;213(4):643-50. doi: 10.1242/jeb.037598.

Abstract

A model is developed to predict the force generated by active skeletal muscle when subjected to imposed patterns of lengthening and shortening, such as those that occur during normal movements. The model is based on data from isolated lamprey muscle and can predict the forces developed during swimming. The model consists of a set of ordinary differential equations, which are solved numerically. The model's first part is a simplified description of the kinetics of Ca(2+) release from sarcoplasmic reticulum and binding to muscle protein filaments, in response to neural activation. The second part is based on A. V. Hill's mechanical model of muscle, consisting of elastic and contractile elements in series, the latter obeying known physiological properties. The parameters of the model are determined by fitting the appropriate mathematical solutions to data recorded from isolated lamprey muscle activated under conditions of constant length or rate of change of length. The model is then used to predict the forces developed under conditions of applied sinusoidal length changes, and the results compared with corresponding data. The most significant advance of this model is the incorporation of work-dependent deactivation, whereby a muscle that has been shortening under load generates less force after the shortening ceases than otherwise expected. In addition, the stiffness in this model is not constant but increases with increasing activation. The model yields a closer prediction to data than has been obtained before, and can thus prove an important component of investigations of the neural-mechanical-environmental interactions that occur during natural movements.

摘要

建立了一个模型,用于预测在受到强制拉长和缩短模式(如在正常运动中发生的那些)作用下主动骨骼肌产生的力。该模型基于来自分离的七鳃鳗肌肉的数据,可以预测游泳过程中产生的力。该模型由一组常微分方程组成,通过数值求解。模型的第一部分是对神经激活时肌浆网中 Ca(2+)释放和与肌肉蛋白丝结合的动力学的简化描述。第二部分基于 A. V. Hill 的肌肉力学模型,由串联的弹性和收缩元件组成,后者遵循已知的生理特性。模型的参数通过将适当的数学解拟合到在恒长或长度变化率条件下激活的分离的七鳃鳗肌肉记录的数据来确定。然后,该模型用于预测在施加正弦长度变化条件下产生的力,并将结果与相应的数据进行比较。该模型的最重要进展是纳入了依赖于工作的失活,由此,在负载下缩短的肌肉在缩短停止后产生的力比预期的要小。此外,该模型中的刚度不是恒定的,而是随着激活的增加而增加。该模型产生的数据预测比以前更接近,因此可以证明是研究在自然运动过程中发生的神经力学环境相互作用的重要组成部分。

相似文献

5
An elastic rod model for anguilliform swimming.一种用于鳗鲡状游动的弹性杆模型。
J Math Biol. 2006 Nov;53(5):843-86. doi: 10.1007/s00285-006-0036-8. Epub 2006 Sep 14.
8
Simulations of neuromuscular control in lamprey swimming.七鳃鳗游泳时神经肌肉控制的模拟
Philos Trans R Soc Lond B Biol Sci. 1999 May 29;354(1385):895-902. doi: 10.1098/rstb.1999.0441.
10
Skeletal muscle stiffness in static and dynamic contractions.静态和动态收缩时的骨骼肌僵硬
J Biomech. 1994 Nov;27(11):1361-8. doi: 10.1016/0021-9290(94)90045-0.

引用本文的文献

3
Energetics of optimal undulatory swimming organisms.最优波动游泳生物的能量学。
PLoS Comput Biol. 2019 Oct 31;15(10):e1007387. doi: 10.1371/journal.pcbi.1007387. eCollection 2019 Oct.
8
Using computational and mechanical models to study animal locomotion.利用计算和力学模型研究动物运动。
Integr Comp Biol. 2012 Nov;52(5):553-75. doi: 10.1093/icb/ics115. Epub 2012 Sep 16.
9
Optimal shape and motion of undulatory swimming organisms.波动游泳生物的最优形状和运动。
Proc Biol Sci. 2012 Aug 7;279(1740):3065-74. doi: 10.1098/rspb.2012.0057. Epub 2012 Mar 28.

本文引用的文献

1
Flowfield measurements in the wake of a robotic lamprey.机器人七鳃鳗尾流中的流场测量。
Exp Fluids. 2007 Nov 1;43(5):683-690. doi: 10.1007/s00348-007-0412-1.
5
The abrupt transition from rest to activity in muscle.肌肉从静止状态到活动状态的突然转变。
Proc R Soc Lond B Biol Sci. 1949 Oct;136(884):399-420. doi: 10.1098/rspb.1949.0033.
9
The mechanical properties of relaxing muscle.舒张肌肉的力学特性。
J Physiol. 1960 Jun;152(1):30-47. doi: 10.1113/jphysiol.1960.sp006467.
10
An analysis of the mechanical components in frog's striated muscle.青蛙横纹肌中机械成分的分析。
J Physiol. 1958 Oct 31;143(3):515-40. doi: 10.1113/jphysiol.1958.sp006075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验