Suppr超能文献

波动游泳生物的最优形状和运动。

Optimal shape and motion of undulatory swimming organisms.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Proc Biol Sci. 2012 Aug 7;279(1740):3065-74. doi: 10.1098/rspb.2012.0057. Epub 2012 Mar 28.

Abstract

Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a combined hydrodynamical, structural and novel muscular model. We develop a muscular model for periodic muscle contraction which provides relevant kinematic and energetic quantities required to describe swimming. Using an evolutionary algorithm, we performed a multi-objective optimization for achieving maximum sustained swimming speed U and minimum cost of transport (COT)--two conflicting locomotive performance measures that have been conjectured as likely to increase fitness for survival. Starting from an initial population of random characteristics, our results show that, for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT are optimized. Inherent boundary-layer-dependent allometric scaling between body mass and kinematic and energetic quantities of the optimal populations is observed. The trade-off between U and COT affects the geometry, kinematics and energetics of swimming organisms. Our results are corroborated by empirical data from swimming animals over nine orders of magnitude in size, supporting the notion that optimizing U and COT could be the driving force of evolution in many species.

摘要

波动游泳动物表现出多样的体型和运动模式,通常被认为具有优越的运动性能。然而,由于运动因素而进化的游泳动物的形态特征的程度尚不清楚。为了阐明这个问题,我们在此提出了通过在一个综合的流体动力学、结构和新颖的肌肉模型框架内优化运动性能指标,得出的波动游泳生物的最佳形状和运动。我们为周期性肌肉收缩开发了一个肌肉模型,提供了描述游泳所需的相关运动学和能量学参数。我们使用进化算法进行了多目标优化,以实现最大持续游泳速度 U 和最小运动成本 (COT)——这两个被认为可能提高生存适应性的运动性能指标。从初始的随机特征种群开始,我们的结果表明,在一定的体型范围内,当 U 和 COT 被优化时,确实会出现类似鱼的体型和运动。在最佳种群中,观察到了固有边界层相关的体质量和运动学、能量学参数的比例缩放关系。U 和 COT 之间的权衡影响了游泳生物的几何形状、运动学和能量学。我们的结果得到了跨越 9 个数量级的游泳动物的实验数据的支持,这支持了优化 U 和 COT 可能是许多物种进化的驱动力的观点。

相似文献

1
Optimal shape and motion of undulatory swimming organisms.
Proc Biol Sci. 2012 Aug 7;279(1740):3065-74. doi: 10.1098/rspb.2012.0057. Epub 2012 Mar 28.
2
Energetics of optimal undulatory swimming organisms.
PLoS Comput Biol. 2019 Oct 31;15(10):e1007387. doi: 10.1371/journal.pcbi.1007387. eCollection 2019 Oct.
3
Fishes regulate tail-beat kinematics to minimize speed-specific cost of transport.
Proc Biol Sci. 2021 Dec 8;288(1964):20211601. doi: 10.1098/rspb.2021.1601. Epub 2021 Dec 1.
4
Go reconfigure: how fish change shape as they swim and evolve.
Integr Comp Biol. 2010 Dec;50(6):1120-39. doi: 10.1093/icb/icq066. Epub 2010 Jun 24.
5
Fish-inspired segment models for undulatory steady swimming.
Bioinspir Biomim. 2022 May 24;17(4). doi: 10.1088/1748-3190/ac6bd6.
6
Convergence of undulatory swimming kinematics across a diversity of fishes.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2113206118.
7
Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
Soft Robot. 2017 Sep;4(3):202-210. doi: 10.1089/soro.2016.0053. Epub 2017 May 16.
8
Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
J Exp Biol. 2014 Jun 15;217(Pt 12):2110-20. doi: 10.1242/jeb.098046. Epub 2014 Mar 13.
9
Center of mass motion in swimming fish: effects of speed and locomotor mode during undulatory propulsion.
Zoology (Jena). 2014 Aug;117(4):269-81. doi: 10.1016/j.zool.2014.03.002. Epub 2014 May 12.
10
Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
Bioinspir Biomim. 2015 Apr 16;10(3):036002. doi: 10.1088/1748-3190/10/3/036002.

引用本文的文献

1
Variability of morphology-performance relationships under acute exposure to different temperatures in 3 strains of zebrafish.
Curr Zool. 2024 Jun 17;71(2):152-161. doi: 10.1093/cz/zoae032. eCollection 2025 Apr.
2
Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control.
Micromachines (Basel). 2022 Jan 10;13(1):110. doi: 10.3390/mi13010110.
3
Energetics of optimal undulatory swimming organisms.
PLoS Comput Biol. 2019 Oct 31;15(10):e1007387. doi: 10.1371/journal.pcbi.1007387. eCollection 2019 Oct.
4
Why do placentas evolve? Evidence for a morphological advantage during pregnancy in live-bearing fish.
PLoS One. 2018 Apr 16;13(4):e0195976. doi: 10.1371/journal.pone.0195976. eCollection 2018.
5
Gait and speed selection in slender inertial swimmers.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3874-9. doi: 10.1073/pnas.1419335112. Epub 2015 Mar 13.
7
Predicting power-optimal kinematics of avian wings.
J R Soc Interface. 2015 Jan 6;12(102):20140953. doi: 10.1098/rsif.2014.0953.
9
Body fineness ratio as a predictor of maximum prolonged-swimming speed in coral reef fishes.
PLoS One. 2013 Oct 18;8(10):e75422. doi: 10.1371/journal.pone.0075422. eCollection 2013.
10
Viscoelastic properties of the nematode Caenorhabditis elegans, a self-similar, shear-thinning worm.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4528-33. doi: 10.1073/pnas.1219965110. Epub 2013 Mar 4.

本文引用的文献

1
Optimum Muscle Design for Oscillatory Movements.
J Theor Biol. 1997 Feb 7;184(3):253-259. doi: 10.1006/jtbi.1996.0271.
2
Power requirements of swimming: do new methods resolve old questions?
Integr Comp Biol. 2002 Nov;42(5):1018-25. doi: 10.1093/icb/42.5.1018.
3
Trade-off between steady and unsteady swimming underlies predator-driven divergence in Gambusia affinis.
J Evol Biol. 2009 May;22(5):1057-75. doi: 10.1111/j.1420-9101.2009.01716.x.
4
Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19832-7. doi: 10.1073/pnas.1011564107. Epub 2010 Oct 29.
5
Scaling of basal metabolic rate with body mass and temperature in mammals.
J Anim Ecol. 2010 May;79(3):610-9. doi: 10.1111/j.1365-2656.2010.01672.x. Epub 2010 Feb 18.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验