Institute for Systems Research and Department of Biology, University of Maryland, College Park, MD, USA.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19832-7. doi: 10.1073/pnas.1011564107. Epub 2010 Oct 29.
Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.
动物的运动是由许多不同力量的复杂平衡产生的。肌肉产生力量来移动身体;身体具有惯性、弹性和阻尼特性,这些特性可能有助于或反对肌肉力量;环境对身体产生反作用力。实际运动是这些相互作用的涌现性质。为了研究身体刚度、肌肉激活和游泳动物的流体环境的作用,开发了一种七鳃鳗的计算模型。该模型使用浸入边界框架,将纳维-斯托克斯流体动力学方程与受激弹性体模型完全耦合。这是第一个适用于游泳鱼类的雷诺数的模型,它捕捉到了完整的流固相互作用,其中身体根据内部肌肉力量和外部流体力量进行变形。结果表明,相同的肌肉激活模式会根据身体刚度产生不同的运动学,并且对于最大加速度的最佳刚度值与对于最大稳定游泳速度的最佳刚度值不同。此外,在没有感觉输入的情况下,许多鱼类中观察到的负肌肉功在更高的尾部拍打频率下出现,并且可能有助于提高能量效率。因此,能够通过适当的肌肉收缩来调整身体刚度的游泳鱼类,可能能够优化身体的被动动力学,以最大限度地提高峰值加速度或游泳速度。