Suppr超能文献

基于吸引子的神经回路序列和模式生成模型。

ATTRACTOR-BASED MODELS FOR SEQUENCES AND PATTERN GENERATION IN NEURAL CIRCUITS.

作者信息

Alvarez Juliana Londono

机构信息

The Pennsylvania State University, The Graduate School.

出版信息

ArXiv. 2024 Oct 14:arXiv:2410.11012v1.

Abstract

Neural circuits in the brain perform a variety of essential functions, including input classification, pattern completion, and the generation of rhythms and oscillations that support processes such as breathing and locomotion [51]. There is also substantial evidence that the brain encodes memories and processes information via of neural activity. In this dissertation, we are focused on the general problem of how neural circuits encode rhythmic activity, as in central pattern generators (CPGs), as well as the encoding of sequences. Traditionally, rhythmic activity and CPGs have been modeled using coupled oscillators. Here we take a different approach, and present models for several different neural functions using threshold-linear networks. Our approach aims to unify attractor-based models (e.g., Hopfield networks) which encode static and dynamic patterns as attractors of the network. In the first half of this dissertation, we present several attractor-based models. These include: a network that can count the number of external inputs it receives; two models for locomotion, one encoding five different quadruped gaits and another encoding the orientation system of a swimming mollusk; and, finally, a model that connects the fixed point sequences with locomotion attractors to obtain a network that steps through a sequence of dynamic attractors. In the second half of the thesis, we present new theoretical results, some of which have already been published in [59]. There, we established conditions on network architectures to produce sequential attractors. Here we also include several new theorems relating the fixed points of composite networks to those of their component subnetworks, as well as a new architecture for layering networks which produces "fusion" attractors by minimizing interference between the attractors of individual layers.

摘要

大脑中的神经回路执行各种基本功能,包括输入分类、模式完成以及产生支持呼吸和运动等过程的节律和振荡[51]。也有大量证据表明,大脑通过神经活动对记忆进行编码并处理信息。在本论文中,我们关注的是神经回路如何编码节律性活动这一普遍问题,如在中枢模式发生器(CPG)中,以及序列的编码。传统上,节律性活动和CPG是使用耦合振荡器进行建模的。在这里,我们采用了一种不同的方法,使用阈值线性网络为几种不同的神经功能建立模型。我们的方法旨在统一基于吸引子的模型(例如霍普菲尔德网络),这些模型将静态和动态模式编码为网络的吸引子。在本论文的前半部分,我们提出了几种基于吸引子的模型。这些模型包括:一个能够对其接收到的外部输入数量进行计数的网络;两个用于运动的模型,一个编码五种不同的四足动物步态,另一个编码游泳软体动物的定向系统;最后,一个将定点序列与运动吸引子连接起来以获得一个能遍历一系列动态吸引子的网络。在论文的后半部分,我们给出了新的理论结果,其中一些已经发表在[59]中。在那里,我们建立了关于网络架构以产生序列吸引子的条件。在这里,我们还包括几个新的定理,这些定理将复合网络的不动点与其组成子网的不动点联系起来,以及一种用于分层网络的新架构,该架构通过最小化各层吸引子之间的干扰来产生“融合”吸引子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/883a/11527095/cadac90e28e9/nihpp-2410.11012v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验