Suppr超能文献

酵母中淀粉样蛋白形成的相互依赖性:对多聚谷氨酰胺疾病和生物学功能的影响。

Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions.

机构信息

Cardiology Research Center, Moscow, Russia.

出版信息

Prion. 2010 Jan-Mar;4(1):45-52. doi: 10.4161/pri.4.1.11074. Epub 2010 Jan 18.

Abstract

In eukaryotic cells amyloid aggregates may incorporate various functionally unrelated proteins. In mammalian diseases this may cause amyloid toxicity, while in yeast this could contribute to prion phenotypes. Insolubility of amyloids in the presence of strong ionic detergents, such as SDS or sarcosyl, allows discrimination between amorphous and amyloid aggregates. Here, we used this property of amyloids to study the interdependence of their formation in yeast. We observed that SDS-resistant polymers of proteins with extended polyglutamine domains caused the appearance of SDS or sarcosyl-insoluble polymers of three tested chromosomally-encoded Q/N-rich proteins, Sup35, Rnq1 and Pub1. These polymers were non-heritable, since they could not propagate in the absence of polyglutamine polymers. Sup35 prion polymers caused the appearance of non-heritable sarcosyl-resistant polymers of Pub1. Since eukaryotic genomes encode hundreds of proteins with long Q/N-rich regions, polymer interdependence suggests that conversion of a single protein into polymer form may significantly affect cell physiology by causing partial transfer of other Q/N-rich proteins into a non-functional polymer state.

摘要

在真核细胞中,淀粉样纤维可能会结合各种功能上不相关的蛋白质。在哺乳动物疾病中,这可能导致淀粉样毒性,而在酵母中,这可能导致朊病毒表型。在存在强离子去污剂(如 SDS 或肌氨酸)的情况下,淀粉样物质不溶,这允许区分无定形和淀粉样纤维聚集物。在这里,我们利用淀粉样纤维的这一特性来研究酵母中它们形成的相互依赖性。我们观察到,具有延伸多谷氨酰胺结构域的蛋白质的 SDS 抗性聚合物导致了三种测试的染色体编码的 Q/N 富含蛋白质(Sup35、Rnq1 和 Pub1)的 SDS 或肌氨酸不溶性聚合物的出现。这些聚合物是不可遗传的,因为它们在没有多谷氨酰胺聚合物的情况下无法传播。Sup35 朊病毒聚合物导致 Pub1 的非遗传肌氨酸抗性聚合物的出现。由于真核基因组编码了数百种具有长 Q/N 富含区域的蛋白质,聚合物的相互依赖性表明,单个蛋白质转化为聚合物形式可能会通过将其他 Q/N 富含蛋白质部分转移到无功能的聚合物状态,从而对细胞生理学产生重大影响。

相似文献

1
Interdependence of amyloid formation in yeast: implications for polyglutamine disorders and biological functions.
Prion. 2010 Jan-Mar;4(1):45-52. doi: 10.4161/pri.4.1.11074. Epub 2010 Jan 18.
2
Appearance and propagation of polyglutamine-based amyloids in yeast: tyrosine residues enable polymer fragmentation.
J Biol Chem. 2008 May 30;283(22):15185-92. doi: 10.1074/jbc.M802071200. Epub 2008 Apr 1.
3
Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.
J Biol Chem. 2011 May 6;286(18):15773-80. doi: 10.1074/jbc.M110.183889. Epub 2011 Mar 15.
4
Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton.
Mol Cell. 2014 Jul 17;55(2):305-18. doi: 10.1016/j.molcel.2014.05.027. Epub 2014 Jun 26.
5
Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12934-9. doi: 10.1073/pnas.0404968101. Epub 2004 Aug 23.
7
Prion and nonprion amyloids: a comparison inspired by the yeast Sup35 protein.
Prion. 2007 Jul-Sep;1(3):179-84. doi: 10.4161/pri.1.3.4840. Epub 2007 Jul 6.
8
Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
PLoS One. 2010 Mar 10;5(3):e9642. doi: 10.1371/journal.pone.0009642.
9
Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35.
Prion. 2019 Jan;13(1):21-32. doi: 10.1080/19336896.2018.1558763. Epub 2018 Dec 27.
10
The Pub1 and Upf1 Proteins Act in Concert to Protect Yeast from Toxicity of the [PSI⁺] Prion.
Int J Mol Sci. 2018 Nov 20;19(11):3663. doi: 10.3390/ijms19113663.

引用本文的文献

1
Amyloid Fragmentation and Disaggregation in Yeast and Animals.
Biomolecules. 2021 Dec 15;11(12):1884. doi: 10.3390/biom11121884.
2
Huntingtin Polyglutamine Fragments Are a Substrate for Hsp104 in Saccharomyces cerevisiae.
Mol Cell Biol. 2021 Oct 26;41(11):e0012221. doi: 10.1128/MCB.00122-21. Epub 2021 Aug 23.
3
The Pub1 and Upf1 Proteins Act in Concert to Protect Yeast from Toxicity of the [PSI⁺] Prion.
Int J Mol Sci. 2018 Nov 20;19(11):3663. doi: 10.3390/ijms19113663.
5
Screening for amyloid proteins in the yeast proteome.
Curr Genet. 2018 Apr;64(2):469-478. doi: 10.1007/s00294-017-0759-7. Epub 2017 Oct 11.
6
Prions, amyloids, and RNA: Pieces of a puzzle.
Prion. 2016 May 3;10(3):182-206. doi: 10.1080/19336896.2016.1181253.
9
Proteomic screening for amyloid proteins.
PLoS One. 2014 Dec 30;9(12):e116003. doi: 10.1371/journal.pone.0116003. eCollection 2014.
10
Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton.
Mol Cell. 2014 Jul 17;55(2):305-18. doi: 10.1016/j.molcel.2014.05.027. Epub 2014 Jun 26.

本文引用的文献

1
Sequestration of essential proteins causes prion associated toxicity in yeast.
Mol Microbiol. 2009 Sep;73(6):1101-14. doi: 10.1111/j.1365-2958.2009.06836.x. Epub 2009 Aug 11.
2
A systematic survey identifies prions and illuminates sequence features of prionogenic proteins.
Cell. 2009 Apr 3;137(1):146-58. doi: 10.1016/j.cell.2009.02.044.
3
The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion.
Nat Cell Biol. 2009 Mar;11(3):344-9. doi: 10.1038/ncb1843. Epub 2009 Feb 15.
4
A prion of yeast metacaspase homolog (Mca1p) detected by a genetic screen.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1892-6. doi: 10.1073/pnas.0812470106. Epub 2009 Jan 27.
5
Biological roles of prion domains.
Prion. 2007 Oct-Dec;1(4):228-35. doi: 10.4161/pri.1.4.5059.
7
Prion and nonprion amyloids: a comparison inspired by the yeast Sup35 protein.
Prion. 2007 Jul-Sep;1(3):179-84. doi: 10.4161/pri.1.3.4840. Epub 2007 Jul 6.
8
[Biological functions of amyloids: facts and hypotheses].
Mol Biol (Mosk). 2008 Sep-Oct;42(5):798-808.
9
P bodies promote stress granule assembly in Saccharomyces cerevisiae.
J Cell Biol. 2008 Nov 3;183(3):441-55. doi: 10.1083/jcb.200807043.
10
Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery.
FASEB J. 2009 Feb;23(2):451-63. doi: 10.1096/fj.08-117614. Epub 2008 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验