Suppr超能文献

朊病毒、淀粉样蛋白与RNA:谜题的碎片

Prions, amyloids, and RNA: Pieces of a puzzle.

作者信息

Nizhnikov Anton A, Antonets Kirill S, Bondarev Stanislav A, Inge-Vechtomov Sergey G, Derkatch Irina L

机构信息

a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.

b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.

出版信息

Prion. 2016 May 3;10(3):182-206. doi: 10.1080/19336896.2016.1181253.

Abstract

Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.

摘要

淀粉样蛋白是由富含β折叠的纤维组成的蛋白质聚集体。淀粉样纤维的生长是通过将蛋白质分子添加到聚集体的末端并同时改变构象来实现的。因此,淀粉样蛋白是自我传播的蛋白质构象。在某些情况下,这些构象是可传播的/传染性的;它们被称为朊病毒。最初,淀粉样蛋白是作为在不同组织和器官中出现的病理性细胞外沉积物被发现的。迄今为止,淀粉样蛋白和朊病毒已与人类和动物的30多种不治之症相关联。然而,最近的一些研究表明,淀粉样蛋白在从细菌生物膜形成到动物长期记忆等各种生物过程中也发挥着功能作用。有趣的是,在参与mRNA生命周期各个阶段(从转录和翻译到储存和降解)的细胞因子中,形成淀粉样蛋白的蛋白质高度富集。在这里,我们综述了与mRNA加工相关的功能性和致病性淀粉样蛋白的快速积累的数据,并讨论了朊病毒和淀粉样蛋白网络在调节关键细胞功能中的可能意义。

相似文献

1
Prions, amyloids, and RNA: Pieces of a puzzle.
Prion. 2016 May 3;10(3):182-206. doi: 10.1080/19336896.2016.1181253.
3
Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35.
Prion. 2019 Jan;13(1):21-32. doi: 10.1080/19336896.2018.1558763. Epub 2018 Dec 27.
4
Application of yeast to studying amyloid and prion diseases.
Adv Genet. 2020;105:293-380. doi: 10.1016/bs.adgen.2020.01.002. Epub 2020 May 4.
5
Amyloids, prions and the inherent infectious nature of misfolded protein aggregates.
Trends Biochem Sci. 2006 Mar;31(3):150-5. doi: 10.1016/j.tibs.2006.01.002. Epub 2006 Feb 13.
6
Prions, prionoid complexes and amyloids: the bad, the good and something in between.
Swiss Med Wkly. 2017 Apr 18;147:w14424. doi: 10.4414/smw.2017.14424. eCollection 2017.
7
Prion-like aggregates: infectious agents in human disease.
Trends Mol Med. 2010 Nov;16(11):501-7. doi: 10.1016/j.molmed.2010.08.004. Epub 2010 Oct 1.
8
Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12934-9. doi: 10.1073/pnas.0404968101. Epub 2004 Aug 23.
9
Peptide sequences converting polyglutamine into a prion in yeast.
FEBS J. 2015 Feb;282(3):477-90. doi: 10.1111/febs.13152. Epub 2014 Dec 9.
10
[Neurodegenerative amyloidoses: the yeast model].
Mol Biol (Mosk). 2007 Mar-Apr;41(2):346-54.

引用本文的文献

1
Mutations in human prion-like domains: pathogenic but not always amyloidogenic.
Prion. 2024 Dec;18(1):28-39. doi: 10.1080/19336896.2024.2329186. Epub 2024 Mar 21.
2
Amyloids: The History of Toxicity and Functionality.
Biology (Basel). 2021 May 1;10(5):394. doi: 10.3390/biology10050394.
3
Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins.
Front Neurosci. 2020 Dec 1;14:611285. doi: 10.3389/fnins.2020.611285. eCollection 2020.
4
Functional Mammalian Amyloids and Amyloid-Like Proteins.
Life (Basel). 2020 Aug 21;10(9):156. doi: 10.3390/life10090156.
7
RNA-binding protein FXR1 is presented in rat brain in amyloid form.
Sci Rep. 2019 Dec 12;9(1):18983. doi: 10.1038/s41598-019-55528-6.
10
Comparative functional analysis of proteins containing low-complexity predicted amyloid regions.
PeerJ. 2018 Oct 30;6:e5823. doi: 10.7717/peerj.5823. eCollection 2018.

本文引用的文献

1
Amyloids: from Pathogenesis to Function.
Biochemistry (Mosc). 2015 Sep;80(9):1127-44. doi: 10.1134/S0006297915090047.
2
Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.
Mol Cell. 2015 Oct 15;60(2):208-19. doi: 10.1016/j.molcel.2015.08.018. Epub 2015 Sep 24.
5
The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton.
Cell Rep. 2015 Jun 23;11(11):1772-85. doi: 10.1016/j.celrep.2015.04.060. Epub 2015 Jun 11.
6
SUMOylation Is an Inhibitory Constraint that Regulates the Prion-like Aggregation and Activity of CPEB3.
Cell Rep. 2015 Jun 23;11(11):1694-702. doi: 10.1016/j.celrep.2015.04.061. Epub 2015 Jun 11.
7
The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3.
Neuron. 2015 Jun 17;86(6):1433-48. doi: 10.1016/j.neuron.2015.05.021. Epub 2015 Jun 11.
9
From nucleation to widespread propagation: A prion-like concept for ALS.
Virus Res. 2015 Sep 2;207:94-105. doi: 10.1016/j.virusres.2014.12.032. Epub 2015 Feb 2.
10
Amyloid-like assembly of the low complexity domain of yeast Nab3.
Prion. 2015;9(1):34-47. doi: 10.1080/19336896.2014.997618. Epub 2015 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验