Center for Integrating Statistics and Environmental Science, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA.
Ecology. 2009 Dec;90(12):3554-65. doi: 10.1890/08-0874.1.
Patterns of resource selection by animal populations emerge as a result of the behavior of many individuals. Statistical models that describe these population-level patterns of habitat use can miss important interactions between individual animals and characteristics of their local environment; however, identifying these interactions is difficult. One approach to this problem is to incorporate models of individual movement into resource selection models. To do this, we propose a model for step selection functions (SSF) that is composed of a resource-independent movement kernel and a resource selection function (RSF). We show that standard case-control logistic regression may be used to fit the SSF; however, the sampling scheme used to generate control points (i.e., the definition of availability) must be accommodated. We used three sampling schemes to analyze simulated movement data and found that ignoring sampling and the resource-independent movement kernel yielded biased estimates of selection. The level of bias depended on the method used to generate control locations, the strength of selection, and the spatial scale of the resource map. Using empirical or parametric methods to sample control locations produced biased estimates under stronger selection; however, we show that the addition of a distance function to the analysis substantially reduced that bias. Assuming a uniform availability within a fixed buffer yielded strongly biased selection estimates that could be corrected by including the distance function but remained inefficient relative to the empirical and parametric sampling methods. As a case study, we used location data collected from elk in Yellowstone National Park, USA, to show that selection and bias may be temporally variable. Because under constant selection the amount of bias depends on the scale at which a resource is distributed in the landscape, we suggest that distance always be included as a covariate in SSF analyses. This approach to modeling resource selection is easily implemented using common statistical tools and promises to provide deeper insight into the movement ecology of animals.
动物种群的资源选择模式是由许多个体的行为产生的。描述这些种群水平的栖息地利用模式的统计模型可能会错过个体动物与当地环境特征之间的重要相互作用;然而,识别这些相互作用是很困难的。解决这个问题的一种方法是将个体运动模型纳入资源选择模型中。为此,我们提出了一种步长选择函数(SSF)的模型,它由一个资源独立的运动核和一个资源选择函数(RSF)组成。我们表明,可以使用标准的病例对照逻辑回归来拟合 SSF;然而,用于生成控制点的抽样方案(即可用性的定义)必须适应。我们使用三种抽样方案来分析模拟的运动数据,发现忽略抽样和资源独立的运动核会导致选择的有偏估计。偏倚的程度取决于用于生成控制位置的方法、选择的强度和资源图的空间尺度。使用经验或参数方法来抽样控制位置会在选择更强时产生有偏的估计;然而,我们表明,在分析中添加距离函数可以大大减少这种偏差。在固定缓冲区中假设可用性均匀会产生强烈有偏的选择估计,这些估计可以通过包含距离函数来纠正,但相对于经验和参数抽样方法仍然效率低下。作为一个案例研究,我们使用从美国黄石国家公园的麋鹿收集的位置数据,表明选择和偏差可能是随时间变化的。由于在恒定选择下,偏差的量取决于资源在景观中的分布尺度,因此我们建议在 SSF 分析中始终将距离作为协变量包含在内。这种建模资源选择的方法很容易使用常见的统计工具来实现,并有望为动物的运动生态学提供更深入的了解。