Duchesne Thierry, Fortin Daniel, Rivest Louis-Paul
Département de mathématiques et de statistique, Université Laval, Québec, Québec, Canada.
Département de biologie and Centre d'étude de la forêt, Département de Biologie, Université Laval, Québec, Québec, Canada.
PLoS One. 2015 Apr 21;10(4):e0122947. doi: 10.1371/journal.pone.0122947. eCollection 2015.
Animal movement has a fundamental impact on population and community structure and dynamics. Biased correlated random walks (BCRW) and step selection functions (SSF) are commonly used to study movements. Because no studies have contrasted the parameters and the statistical properties of their estimators for models constructed under these two Lagrangian approaches, it remains unclear whether or not they allow for similar inference. First, we used the Weak Law of Large Numbers to demonstrate that the log-likelihood function for estimating the parameters of BCRW models can be approximated by the log-likelihood of SSFs. Second, we illustrated the link between the two approaches by fitting BCRW with maximum likelihood and with SSF to simulated movement data in virtual environments and to the trajectory of bison (Bison bison L.) trails in natural landscapes. Using simulated and empirical data, we found that the parameters of a BCRW estimated directly from maximum likelihood and by fitting an SSF were remarkably similar. Movement analysis is increasingly used as a tool for understanding the influence of landscape properties on animal distribution. In the rapidly developing field of movement ecology, management and conservation biologists must decide which method they should implement to accurately assess the determinants of animal movement. We showed that BCRW and SSF can provide similar insights into the environmental features influencing animal movements. Both techniques have advantages. BCRW has already been extended to allow for multi-state modeling. Unlike BCRW, however, SSF can be estimated using most statistical packages, it can simultaneously evaluate habitat selection and movement biases, and can easily integrate a large number of movement taxes at multiple scales. SSF thus offers a simple, yet effective, statistical technique to identify movement taxis.
动物运动对种群及群落结构与动态具有根本性影响。偏向相关随机游走(BCRW)和步长选择函数(SSF)是常用于研究运动的方法。由于尚无研究对比在这两种拉格朗日方法下构建的模型的参数及其估计量的统计特性,所以尚不清楚它们是否能得出相似的推断。首先,我们运用大数定律证明,用于估计BCRW模型参数的对数似然函数可由SSF的对数似然近似。其次,我们通过将最大似然法和SSF的BCRW拟合到虚拟环境中的模拟运动数据以及自然景观中野牛(Bison bison L.)足迹的轨迹,来说明这两种方法之间的联系。利用模拟数据和实证数据,我们发现直接从最大似然估计以及通过拟合SSF得到的BCRW参数非常相似。运动分析越来越多地被用作理解景观属性对动物分布影响的工具。在快速发展的运动生态学领域,管理和保护生物学家必须决定应采用哪种方法来准确评估动物运动的决定因素。我们表明,BCRW和SSF能够为影响动物运动的环境特征提供相似的见解。这两种技术都有优点。BCRW已被扩展以允许进行多状态建模。然而,与BCRW不同的是,SSF可以使用大多数统计软件包进行估计,它可以同时评估栖息地选择和运动偏向,并且可以轻松整合多个尺度上的大量运动指标。因此,SSF提供了一种简单而有效的统计技术来识别运动趋性。