Suppr超能文献

考虑景观异质性可改善从移动数据推断个体间相互作用的效果。

Considering landscape heterogeneity improves the inference of inter-individual interactions from movement data.

作者信息

Fronville Thibault, Blaum Niels, Jeltsch Florian, Kramer-Schadt Stephanie, Radchuk Viktoriia

机构信息

Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.

Department of Ecology, Technische Universität Berlin, Rothenburgstr. 12, 12165, Berlin, Germany.

出版信息

Mov Ecol. 2025 Jun 12;13(1):41. doi: 10.1186/s40462-025-00567-0.

Abstract

BACKGROUND

Animal movement is influenced by both the physical environment and social environment. The effects of both environments are not independent from each other and identifying whether the resulting movement trajectories are shaped by interactions between individuals or whether they are the result of their physical environment, is important for understanding animal movement decisions.

METHODS

Here, we assessed whether the commonly used methods for inferring interactions between moving individuals could discern the effects of environment and other moving individuals on the movement of the focal individual. We used three statistical methods: dynamic interaction index, and two methods based on step selection functions. We created five scenarios in which the animals' movements were influenced either by their physical environment alone or by inter-individual interactions. The physical environment is constructed such that it leads to a correlation between the movement trajectories of two individuals.

RESULTS

We found that neglecting the effects of physical environmental features when analysing interactions between moving animals leads to biased inference, i.e. inter-individual interactions spuriously inferred as affecting the movement of the focal individual. We suggest that landscape data should always be included when analysing animal interactions from movement data. In the absence of landscape data, the inference of inter-individual interactions is improved by applying 'Spatial+', a recently introduced method that reduces the bias of unmeasured spatial factors.

CONCLUSIONS

This study contributes to improved inference of biotic and abiotic effects on individual movement obtained by telemetry data. Step selection functions are flexible tools that offer the possibility to include multiple factors of interest as well as combine it with Spatial+.

摘要

背景

动物的运动受物理环境和社会环境的影响。这两种环境的影响并非相互独立,确定最终的运动轨迹是由个体间的相互作用形成的,还是其物理环境的结果,对于理解动物的运动决策很重要。

方法

在这里,我们评估了常用的推断移动个体间相互作用的方法是否能够辨别环境和其他移动个体对目标个体运动的影响。我们使用了三种统计方法:动态相互作用指数,以及两种基于步长选择函数的方法。我们创建了五种情景,在这些情景中动物的运动要么仅受其物理环境影响,要么受个体间相互作用影响。构建物理环境时使其导致两个个体的运动轨迹之间存在相关性。

结果

我们发现,在分析移动动物之间的相互作用时忽略物理环境特征会导致有偏差的推断,即个体间相互作用被错误地推断为影响目标个体的运动。我们建议在从运动数据中分析动物相互作用时应始终纳入景观数据。在没有景观数据的情况下,通过应用“空间+”(一种最近引入的可减少未测量空间因素偏差的方法)可以改善个体间相互作用的推断。

结论

本研究有助于改进对遥测数据所获生物和非生物对个体运动影响的推断。步长选择函数是灵活的工具,提供了纳入多个感兴趣因素以及将其与“空间+”相结合的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf02/12160437/5dd6c846a7f7/40462_2025_567_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验