Suppr超能文献

基于两级三维非刚性配准的股骨统计图谱构建

Femur statistical atlas construction based on two-level 3D non-rigid registration.

作者信息

Wu C, Murtha P E, Jaramaz B

机构信息

Robotics Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

Comput Aided Surg. 2009;14(4-6):83-99. doi: 10.3109/10929080903246543.

Abstract

The statistical atlas is a 3D medical image analysis tool to enable more patient-oriented and efficient diagnosis. The atlas includes information on geometry and its variation across populations. The comparison with information from other patients is very useful for objective quantitative diagnosis. The statistical atlas can also be used to solve other challenging problems such as image segmentation. As a key to the construction of statistical atlases, 3D registration remains an important yet unsolved problem in the medical image field due to the geometrical complexity of anatomical shapes and the computational complexity arising from the enormous size of volume data. In this work we developed a two-level framework to efficiently solve 3D non-rigid registration, and applied the method to the problem of constructing statistical atlases of the femur. In contrast to a general multi-resolution framework, we employed an interpolation to propagate the matching instead of repeating the registration scheme in each resolution. The registration procedure is divided into two levels: a low-resolution solution to the correspondences and mapping of surface models using Chui and Rangarajan's thin-plate spline (TPS)-based algorithm, followed by an interpolation to achieve high-resolution matching. Next, principal component analysis (PCA) is used to build the statistical atlases. Experimental results show the shape variation learned from the atlases, and also demonstrate that our method significantly improves the efficiency of registration without decreasing the accuracy of the atlases.

摘要

统计图谱是一种3D医学图像分析工具,可实现更以患者为导向且高效的诊断。该图谱包含几何信息及其在不同人群中的变化。与其他患者的信息进行比较对于客观定量诊断非常有用。统计图谱还可用于解决其他具有挑战性的问题,如图像分割。作为统计图谱构建的关键,由于解剖形状的几何复杂性以及体积数据巨大规模所带来的计算复杂性,3D配准在医学图像领域仍然是一个重要但尚未解决的问题。在这项工作中,我们开发了一个两级框架来有效解决3D非刚性配准问题,并将该方法应用于构建股骨统计图谱的问题。与一般的多分辨率框架不同,我们采用插值来传播匹配,而不是在每个分辨率下重复配准方案。配准过程分为两个级别:使用基于Chui和Rangarajan薄板样条(TPS)算法对表面模型的对应关系和映射进行低分辨率求解,然后通过插值实现高分辨率匹配。接下来,使用主成分分析(PCA)构建统计图谱。实验结果展示了从图谱中学到的形状变化,并且还表明我们的方法在不降低图谱准确性的情况下显著提高了配准效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验