Department of Computer Science and Engineering, Government College of Engineering and Leather Technology, Kolkata, 700098, India.
J Mol Model. 2013 Sep;19(9):4059-70. doi: 10.1007/s00894-013-1886-9. Epub 2013 Jun 2.
The physico-chemical properties of interaction interfaces have a crucial role in characterization of protein-protein interactions (PPI). In silico prediction of participating amino acids helps to identify interface residues for further experimental verification using mutational analysis, or inhibition studies by screening library of ligands against given protein. Given the unbound structure of a protein and the fact that it forms a complex with another known protein, the objective of this work is to identify the residues that are involved in the interaction. We attempt to predict interaction sites in protein complexes using local composition of amino acids together with their physico-chemical characteristics. The local sequence segments (LSS) are dissected from the protein sequences using a sliding window of 21 amino acids. The list of LSSs is passed to the support vector machine (SVM) predictor, which identifies interacting residue pairs considering their inter-atom distances. We have analyzed three different model organisms of Escherichia coli, Saccharomyces Cerevisiae and Homo sapiens, where the numbers of considered hetero-complexes are equal to 40, 123 and 33 respectively. Moreover, the unified multi-organism PPI meta-predictor is also developed under the current work by combining the training databases of above organisms. The PPIcons interface residues prediction method is measured by the area under ROC curve (AUC) equal to 0.82, 0.75, 0.72 and 0.76 for the aforementioned organisms and the meta-predictor respectively.
相互作用界面的物理化学性质在蛋白质-蛋白质相互作用(PPI)的表征中起着至关重要的作用。参与氨基酸的计算预测有助于识别界面残基,以便进一步通过突变分析或通过针对给定蛋白质的配体文库筛选进行实验验证。考虑到蛋白质的未结合结构以及它与另一种已知蛋白质形成复合物的事实,这项工作的目的是确定参与相互作用的残基。我们尝试使用氨基酸的局部组成及其物理化学特性来预测蛋白质复合物中的相互作用位点。使用 21 个氨基酸的滑动窗口从蛋白质序列中分离局部序列段(LSS)。LSS 列表被传递给支持向量机(SVM)预测器,该预测器考虑到它们的原子间距离来识别相互作用的残基对。我们分析了三种不同的大肠杆菌、酿酒酵母和智人物种的模型,其中考虑的异源复合物的数量分别为 40、123 和 33。此外,还通过结合上述生物体的训练数据库,在当前工作下开发了统一的多生物体 PPI 元预测器。PPIcons 界面残基预测方法的 ROC 曲线下面积(AUC)测量值分别为 0.82、0.75、0.72 和 0.76,适用于上述生物体和元预测器。