Suppr超能文献

通过将基于结构和物理化学描述符的氨基酸特异性分类器与其加权邻居平均值相结合,提高蛋白质-蛋白质界面的预测。

Improving predictions of protein-protein interfaces by combining amino acid-specific classifiers based on structural and physicochemical descriptors with their weighted neighbor averages.

机构信息

Biology Institute, University of Campinas, Campinas, São Paulo, Brazil ; Brazilian Agricultural Research Corporation (EMBRAPA), National Center for Agricultural Informatics, Campinas, São Paulo, Brazil.

Brazilian Agricultural Research Corporation (EMBRAPA), National Center for Agricultural Informatics, Campinas, São Paulo, Brazil.

出版信息

PLoS One. 2014 Jan 28;9(1):e87107. doi: 10.1371/journal.pone.0087107. eCollection 2014.

Abstract

Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now integrated into the BlueStar STING suite of programs. Consequently, the prediction of protein-protein interfaces for all proteins available in the PDB is possible through STING_interfaces module, accessible at the following website: (http://www.cbi.cnptia.embrapa.br/SMS/predictions/index.html).

摘要

蛋白质-蛋白质相互作用涉及细胞中几乎所有的调节过程,被认为是分子生物学和药物科学中最重要的问题之一,但仍未被完全理解。结构和计算生物学为阐明蛋白质相互作用的机制做出了巨大贡献。在本文中,我们提出了一组区分界面形成残基(IFR)和自由表面残基(FSR)的物理化学和结构特征。我们制定了一个线性判别分析(LDA)分类器,以评估来自 BlueStar STING 数据库(http://www.cbi.cnptia.embrapa.br/SMS/)的选定描述符是否适合此类任务。接收者操作特征(ROC)分析表明,用于构建线性分类器的特定物理化学和结构描述符的性能优于随机分类器,实际上,成功地优于一些以前发表的程序,最近其他研究小组对其性能指标进行了比较。本文介绍的结果表明,即使同源蛋白缺失(对于没有同源物可用于比较分析/指示的孤儿蛋白尤其重要),或者在界面形成时伴随某些构象变化时,也可以利用所选描述符集来预测 IFR。显示开发氨基酸类型特异性分类器可以提高 IFR 分类性能。此外,我们发现添加氨基酸保守属性并不能提高分类预测。这一结果表明,与氨基酸保守相关的预测能力的提高已被充分利用广泛的独立物理化学和结构参数列表所耗尽,这些参数本身完全描述了蛋白质-蛋白质界面处的纳米环境。本研究中开发的 IFR 分类器现在已集成到 BlueStar STING 程序套件中。因此,通过可访问以下网站的 STING_interfaces 模块,可对 PDB 中所有可用蛋白质进行蛋白质-蛋白质界面预测:(http://www.cbi.cnptia.embrapa.br/SMS/predictions/index.html)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec2f/3904977/223edbfa7c41/pone.0087107.g001.jpg

相似文献

6
The Diamond STING server.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W29-35. doi: 10.1093/nar/gki397.
8
Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors.
BMC Bioinformatics. 2016 Jun 7;17(1):231. doi: 10.1186/s12859-016-1110-x.

引用本文的文献

1
Learning to utilize internal protein 3D nanoenvironment descriptors in predicting CRISPR-Cas9 off-target activity.
NAR Genom Bioinform. 2025 May 21;7(2):lqaf054. doi: 10.1093/nargab/lqaf054. eCollection 2025 Jun.
2
Protein allosteric site identification using machine learning and per amino acid residue reported internal protein nanoenvironment descriptors.
Comput Struct Biotechnol J. 2024 Oct 23;23:3907-3919. doi: 10.1016/j.csbj.2024.10.036. eCollection 2024 Dec.
3
A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites.
Front Genet. 2021 Oct 26;12:752732. doi: 10.3389/fgene.2021.752732. eCollection 2021.
4
Study of specific nanoenvironments containing α-helices in all-α and (α+β)+(α/β) proteins.
PLoS One. 2018 Jul 10;13(7):e0200018. doi: 10.1371/journal.pone.0200018. eCollection 2018.
5
Comparison of Algorithms for Prediction of Protein Structural Features from Evolutionary Data.
PLoS One. 2016 Mar 10;11(3):e0150769. doi: 10.1371/journal.pone.0150769. eCollection 2016.
6
Algorithmic approaches to protein-protein interaction site prediction.
Algorithms Mol Biol. 2015 Feb 15;10:7. doi: 10.1186/s13015-015-0033-9. eCollection 2015.

本文引用的文献

2
The evolutionary origin of orphan genes.
Nat Rev Genet. 2011 Aug 31;12(10):692-702. doi: 10.1038/nrg3053.
3
PredUs: a web server for predicting protein interfaces using structural neighbors.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W283-7. doi: 10.1093/nar/gkr311. Epub 2011 May 23.
4
Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces.
Phys Biol. 2011 Jun;8(3):035006. doi: 10.1088/1478-3975/8/3/035006. Epub 2011 May 13.
5
Challenges for the prediction of macromolecular interactions.
Curr Opin Struct Biol. 2011 Jun;21(3):382-90. doi: 10.1016/j.sbi.2011.03.013. Epub 2011 Apr 14.
6
Protein-protein docking benchmark version 4.0.
Proteins. 2010 Nov 15;78(15):3111-4. doi: 10.1002/prot.22830.
7
Protein-protein docking tested in blind predictions: the CAPRI experiment.
Mol Biosyst. 2010 Dec;6(12):2351-62. doi: 10.1039/c005060c. Epub 2010 Aug 19.
8
i-Patch: interprotein contact prediction using local network information.
Proteins. 2010 Oct;78(13):2781-97. doi: 10.1002/prot.22792.
9
Protein interface conservation across structure space.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10896-901. doi: 10.1073/pnas.1005894107. Epub 2010 Jun 1.
10
Analysis and prediction of protein quaternary structure.
Methods Mol Biol. 2010;609:349-64. doi: 10.1007/978-1-60327-241-4_20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验