Suppr超能文献

ABCE1 在真核生物终止后核糖体循环中的作用。

The role of ABCE1 in eukaryotic posttermination ribosomal recycling.

机构信息

Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.

出版信息

Mol Cell. 2010 Jan 29;37(2):196-210. doi: 10.1016/j.molcel.2009.12.034.

Abstract

After termination, eukaryotic 80S ribosomes remain associated with mRNA, P-site deacylated tRNA, and release factor eRF1 and must be recycled by dissociating these ligands and separating ribosomes into subunits. Although recycling of eukaryotic posttermination complexes (post-TCs) can be mediated by initiation factors eIF3, eIF1, and eIF1A (Pisarev et al., 2007), this energy-free mechanism can function only in a narrow range of low Mg(2+) concentrations. Here, we report that ABCE1, a conserved and essential member of the ATP-binding cassette (ABC) family of proteins, promotes eukaryotic ribosomal recycling over a wide range of Mg(2+) concentrations. ABCE1 dissociates post-TCs into free 60S subunits and mRNA- and tRNA-bound 40S subunits. It can hydrolyze ATP, GTP, UTP, and CTP. NTP hydrolysis by ABCE1 is stimulated by post-TCs and is required for its recycling activity. Importantly, ABCE1 dissociates only post-TCs obtained with eRF1/eRF3 (or eRF1 alone), but not post-TCs obtained with puromycin in eRF1's absence.

摘要

终止后,真核 80S 核糖体仍然与 mRNA、P 位去酰化的 tRNA 和释放因子 eRF1 结合在一起,必须通过解离这些配体并将核糖体分离成亚基来循环利用。尽管真核终止后复合物(post-TCs)的循环可以由起始因子 eIF3、eIF1 和 eIF1A 介导(Pisarev 等人,2007 年),但这种无能量的机制只能在低 Mg(2+)浓度的狭窄范围内发挥作用。在这里,我们报告说 ABCE1,一种保守且必需的 ATP 结合盒(ABC)蛋白家族成员,在广泛的 Mg(2+)浓度范围内促进真核核糖体的循环利用。ABCE1 将 post-TCs 解离成游离的 60S 亚基和与 mRNA 和 tRNA 结合的 40S 亚基。它可以水解 ATP、GTP、UTP 和 CTP。ABCE1 对 post-TCs 的 NTP 水解受到刺激,并且是其循环利用活性所必需的。重要的是,ABCE1 仅解离与 eRF1/eRF3(或仅 eRF1)获得的 post-TCs,而不与 eRF1 缺失时用 puromycin 获得的 post-TCs 解离。

相似文献

1
The role of ABCE1 in eukaryotic posttermination ribosomal recycling.
Mol Cell. 2010 Jan 29;37(2):196-210. doi: 10.1016/j.molcel.2009.12.034.
2
Recycling of eukaryotic posttermination ribosomal complexes.
Cell. 2007 Oct 19;131(2):286-99. doi: 10.1016/j.cell.2007.08.041.
3
Reinitiation and other unconventional posttermination events during eukaryotic translation.
Mol Cell. 2013 Jul 25;51(2):249-64. doi: 10.1016/j.molcel.2013.05.026. Epub 2013 Jun 27.
4
Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1.
Cell Rep. 2014 Jul 10;8(1):59-65. doi: 10.1016/j.celrep.2014.04.058. Epub 2014 Jul 4.
5
Translation Termination and Ribosome Recycling in Eukaryotes.
Cold Spring Harb Perspect Biol. 2018 Oct 1;10(10):a032656. doi: 10.1101/cshperspect.a032656.
6
Termination and post-termination events in eukaryotic translation.
Adv Protein Chem Struct Biol. 2012;86:45-93. doi: 10.1016/B978-0-12-386497-0.00002-5.
7
Structural view on recycling of archaeal and eukaryotic ribosomes after canonical termination and ribosome rescue.
Curr Opin Struct Biol. 2012 Dec;22(6):786-96. doi: 10.1016/j.sbi.2012.08.002. Epub 2012 Sep 29.
8
9
Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells.
PLoS Genet. 2013 Nov;9(11):e1003962. doi: 10.1371/journal.pgen.1003962. Epub 2013 Nov 21.
10
Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES.
Mol Cell. 2015 Feb 5;57(3):422-32. doi: 10.1016/j.molcel.2014.12.016. Epub 2015 Jan 15.

引用本文的文献

1
Optimizing Human Cell-Free System for Efficient Protein Production.
J Microbiol Biotechnol. 2025 Feb 25;35:e2410026. doi: 10.4014/jmb.2410.10026.
4
Functional Activity of Isoform 2 of Human eRF1.
Int J Mol Sci. 2024 Jul 22;25(14):7997. doi: 10.3390/ijms25147997.
5
Dysregulated ribosome quality control in human diseases.
FEBS J. 2025 Mar;292(5):936-959. doi: 10.1111/febs.17217. Epub 2024 Jul 1.
7
Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms.
Life Sci Alliance. 2024 May 21;7(7). doi: 10.26508/lsa.202302501. Print 2024 Jul.
8
Regulation of translation in response to iron deficiency in human cells.
Sci Rep. 2024 Apr 11;14(1):8451. doi: 10.1038/s41598-024-59003-9.
9
Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats.
Nucleic Acids Res. 2024 Jun 10;52(10):5928-5949. doi: 10.1093/nar/gkae137.

本文引用的文献

1
ABC50 promotes translation initiation in mammalian cells.
J Biol Chem. 2009 Sep 4;284(36):24061-73. doi: 10.1074/jbc.M109.031625. Epub 2009 Jul 1.
2
Structural insights into eRF3 and stop codon recognition by eRF1.
Genes Dev. 2009 May 1;23(9):1106-18. doi: 10.1101/gad.1770109.
3
ABC transporters: the power to change.
Nat Rev Mol Cell Biol. 2009 Mar;10(3):218-27. doi: 10.1038/nrm2646.
5
Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications.
EMBO Rep. 2008 Jul;9(7):629-35. doi: 10.1038/embor.2008.104. Epub 2008 Jun 13.
7
The termination of translation.
Curr Opin Struct Biol. 2008 Feb;18(1):70-7. doi: 10.1016/j.sbi.2007.11.005.
8
X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi.
J Biol Chem. 2008 Mar 21;283(12):7962-71. doi: 10.1074/jbc.M707347200. Epub 2007 Dec 26.
9
Recycling of eukaryotic posttermination ribosomal complexes.
Cell. 2007 Oct 19;131(2):286-99. doi: 10.1016/j.cell.2007.08.041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验