Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
J Neurosci Methods. 2010 Apr 30;188(1):32-8. doi: 10.1016/j.jneumeth.2010.01.031. Epub 2010 Feb 1.
In receptor binding assays with ultra-high-affinity radioligands, it is difficult, in practice, to adhere the golden rule that the receptor concentration in the assay should be substantially (at least 10-fold) lower than the dissociation constant (K(d)) of the radioligand and inhibition constant (K(i)) of compound. Especially for low specific activity radioligands (usually tritiated ligands of a couple of TBq/mmol), routinely applied in concentrations at around or below the K(d), the use of extremely small amounts of receptor protein per assay will result in low levels of bound radioactivity; the alternative use of larger assay volumes will make it difficult to apply 96-well filtration devices. For assessing the inhibition constant (K(i)) of competitive inhibitors under conditions violating the above golden rule, equations are available incorporating both [receptor] and [ligand] versus K(d); however, their application requires precise knowledge of [receptor] or initial bound/free [radioligand] ratio. In this study, we present the theoretical basis for determining the K(i) for a competitive inhibitor in a new protocol at high [protein] and high [radioligand] with the simple Cheng-Prusoff correction without the need to correct for [receptor] or initial bound/free [radioligand] ratio. In addition, we present results on the binding of the ultra-high-affinity ligand [(3)H]spiperone to dopamine D(2) and D(3) receptors validating the K(i) values calculated with the new protocol for competitive inhibitors as compared with those calculated with the most comprehensive equation available to date, that of Munson and Rodbard (1988). Binding was measured at varying [radioligand] and [receptor], test compounds (including (-)5-OH-DPAT, (+/-)7-OH-DPAT, and ropinirole) were run with varying [receptor], and simulations were done at vastly varying [radioligand] for inhibitors with vastly different K(i)s. The modified high [radioligand] protocol presented here removes a major hindrance in the proper execution of binding assays with ultra-high-affinity tritiated ligands with K(d) values in the sub-nanomolar range, allowing the use of 96-well plates with small volumes of 100-200 microl per binding assay.
在使用超高亲和力放射性配体的受体结合测定中,实际上很难遵守这样一个黄金法则,即测定中的受体浓度应远低于放射性配体的解离常数 (K(d)) 和化合物的抑制常数 (K(i))。特别是对于低比活度放射性配体(通常为几个 TBq/mmol 的氚化配体),通常在接近或低于 K(d) 的浓度下使用,每个测定中使用极少量的受体蛋白会导致结合放射性的水平较低;而使用更大的测定体积会使使用 96 孔过滤装置变得困难。对于在违反上述黄金法则的条件下评估竞争性抑制剂的抑制常数 (K(i)),可以使用包含 [受体] 和 [配体] 与 K(d) 的方程式;然而,它们的应用需要对 [受体] 或初始结合/游离 [放射性配体] 比值有精确的了解。在这项研究中,我们提出了一种新方案的理论基础,该方案在高 [蛋白] 和高 [放射性配体] 条件下使用简单的 Cheng-Prusoff 校正来确定竞争性抑制剂的 K(i),而无需对 [受体] 或初始结合/游离 [放射性配体] 比值进行校正。此外,我们还展示了超高亲和力配体 [(3)H]spiperone 与多巴胺 D(2) 和 D(3) 受体结合的结果,验证了用新方案计算竞争性抑制剂的 K(i) 值与迄今为止最全面的方程式(Munson 和 Rodbard,1988 年)计算的 K(i) 值的一致性。在不同的 [放射性配体] 和 [受体] 下测量结合,用不同的 [受体] 运行测试化合物(包括 (-)5-OH-DPAT、(+)/-7-OH-DPAT 和罗匹尼罗),并在抑制剂的 [放射性配体] 相差很大的情况下进行模拟。这里提出的改良高 [放射性配体] 方案消除了使用具有亚纳摩尔范围内的 K(d) 值的超高亲和力氚化配体进行结合测定的主要障碍,允许使用 96 孔板,每个结合测定的体积为 100-200 微升。