Suppr超能文献

一种双稳态开关作为 B 细胞分化的基础,以及环境污染物 2,3,7,8-四氯二苯并对二恶英对其的破坏。

A bistable switch underlying B-cell differentiation and its disruption by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin.

机构信息

Division of Computational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.

出版信息

Toxicol Sci. 2010 May;115(1):51-65. doi: 10.1093/toxsci/kfq035. Epub 2010 Feb 1.

Abstract

The differentiation of B cells into antibody-secreting plasma cells upon antigen stimulation, a crucial step in the humoral immune response, is disrupted by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Several key regulatory proteins in the B-cell transcriptional network have been identified, with two coupled mutually repressive feedback loops among the three transcription factors B-cell lymphoma 6 (Bcl-6), B lymphocyte-induced maturation protein 1(Blimp-1), and paired box 5 (Pax5) forming the core of the network. However, the precise mechanisms underlying B-cell differentiation and its disruption by TCDD are not fully understood. Here we show with a computational systems biology model that coupling of the two feedback loops at the Blimp-1 node, through parallel inhibition of Blimp-1 gene activation by Bcl-6 and repression of Blimp-1 gene deactivation by Pax5, can generate a bistable switch capable of directing B cells to differentiate into plasma cells. We also use bifurcation analysis to propose that TCDD may suppress the B-cell to plasma cell differentiation process by raising the threshold dose of antigens such as lipopolysaccharide required to trigger the bistable switch. Our model further predicts that high doses of TCDD may render the switch reversible, thus causing plasma cells to lose immune function and dedifferentiate to a B cell-like state. The immunotoxic implications of these predictions are twofold. First, TCDD and related compounds would disrupt the initiation of the humoral immune response by reducing the proportion of B cells that respond to antigen and differentiate into antibody-secreting plasma cells. Second, TCDD may also disrupt the maintenance of the immune response by depleting the pool of available plasma cells through dedifferentiation.

摘要

抗原刺激下 B 细胞分化为分泌抗体的浆细胞,这是体液免疫反应的关键步骤,而 2,3,7,8-四氯二苯并对二恶英(TCDD)会破坏这一过程。B 细胞转录网络中的几个关键调控蛋白已经被鉴定出来,其中三个转录因子 B 细胞淋巴瘤 6(Bcl-6)、B 淋巴细胞诱导成熟蛋白 1(Blimp-1)和配对盒 5(Pax5)之间存在两个相互抑制的反馈回路,形成了网络的核心。然而,B 细胞分化的精确机制及其被 TCDD 破坏的机制尚不完全清楚。在这里,我们通过计算系统生物学模型表明,通过 Bcl-6 平行抑制 Blimp-1 基因的激活和 Pax5 抑制 Blimp-1 基因的失活,在 Blimp-1 节点上耦合两个反馈回路,可以产生一个双稳态开关,能够指导 B 细胞分化为浆细胞。我们还使用分岔分析来提出,TCDD 可能通过提高触发双稳态开关所需的抗原(如脂多糖)的阈值剂量来抑制 B 细胞向浆细胞分化过程。我们的模型还进一步预测,高剂量的 TCDD 可能使开关具有可逆性,从而导致浆细胞失去免疫功能并分化为类似 B 细胞的状态。这些预测的免疫毒性有两个方面。首先,TCDD 和相关化合物通过降低对抗原产生反应并分化为分泌抗体的浆细胞的 B 细胞比例来破坏体液免疫反应的启动。其次,TCDD 也可能通过分化使可用浆细胞池耗尽来破坏免疫反应的维持。

相似文献

4
7
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the regulation of Pax5 in lipopolysaccharide-activated B cells.
Toxicol Sci. 2004 Feb;77(2):272-9. doi: 10.1093/toxsci/kfh013. Epub 2003 Nov 4.
8
All-or-none suppression of B cell terminal differentiation by environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Toxicol Appl Pharmacol. 2013 Apr 1;268(1):17-26. doi: 10.1016/j.taap.2013.01.015. Epub 2013 Jan 26.
10
Different kinetics of blimp-1 induction in B cell subsets revealed by reporter gene.
J Immunol. 2007 Apr 1;178(7):4104-11. doi: 10.4049/jimmunol.178.7.4104.

引用本文的文献

1
A multiscale spatial modeling framework for the germinal center response.
Front Immunol. 2024 May 30;15:1377303. doi: 10.3389/fimmu.2024.1377303. eCollection 2024.
2
Unique challenges and best practices for single cell transcriptomic analysis in toxicology.
Curr Opin Toxicol. 2024 Jun;38. doi: 10.1016/j.cotox.2024.100475. Epub 2024 Mar 29.
3
A New Bistable Switch Model of Alzheimer's Disease Pathogenesis.
Int J Mol Sci. 2022 Jun 25;23(13):7061. doi: 10.3390/ijms23137061.
5
From Genes to Transcripts, a Tightly Regulated Journey in .
Front Cell Infect Microbiol. 2020 Dec 17;10:618454. doi: 10.3389/fcimb.2020.618454. eCollection 2020.
6
A multistationary loop model of ALS unveils critical molecular interactions involving mitochondria and glucose metabolism.
PLoS One. 2020 Dec 17;15(12):e0244234. doi: 10.1371/journal.pone.0244234. eCollection 2020.
7
From Discrete to Continuous Modeling of Lymphocyte Development and Plasticity in Chronic Diseases.
Front Immunol. 2019 Aug 20;10:1927. doi: 10.3389/fimmu.2019.01927. eCollection 2019.
8
Dynamical systems approaches to personalized medicine.
Curr Opin Biotechnol. 2019 Aug;58:168-174. doi: 10.1016/j.copbio.2019.03.005. Epub 2019 Apr 9.
9
Bridging the Data Gap From Toxicity Testing to Chemical Safety Assessment Through Computational Modeling.
Front Public Health. 2018 Sep 11;6:261. doi: 10.3389/fpubh.2018.00261. eCollection 2018.
10
Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites.
Nature. 2017 Nov 2;551(7678):95-99. doi: 10.1038/nature24280. Epub 2017 Sep 25.

本文引用的文献

1
Stochastic approaches in systems biology.
Wiley Interdiscip Rev Syst Biol Med. 2010 Jul-Aug;2(4):385-397. doi: 10.1002/wsbm.78.
2
Agent-based models in translational systems biology.
Wiley Interdiscip Rev Syst Biol Med. 2009 Sep-Oct;1(2):159-171. doi: 10.1002/wsbm.45.
3
The aryl hydrocarbon receptor: a perspective on potential roles in the immune system.
Immunology. 2009 Jul;127(3):299-311. doi: 10.1111/j.1365-2567.2009.03054.x.
4
Bistable switches control memory and plasticity in cellular differentiation.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6638-43. doi: 10.1073/pnas.0806137106. Epub 2009 Apr 6.
6
Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility.
PLoS Comput Biol. 2009 Jan;5(1):e1000268. doi: 10.1371/journal.pcbi.1000268. Epub 2009 Jan 23.
7
Stochastic modelling for quantitative description of heterogeneous biological systems.
Nat Rev Genet. 2009 Feb;10(2):122-33. doi: 10.1038/nrg2509.
9
Developmental plasticity of lymphocytes.
Curr Opin Immunol. 2008 Apr;20(2):139-48. doi: 10.1016/j.coi.2008.03.017. Epub 2008 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验