Suppr超能文献

毒理学中单细胞转录组分析的独特挑战与最佳实践

Unique challenges and best practices for single cell transcriptomic analysis in toxicology.

作者信息

Filipovic David, Kana Omar, Marri Daniel, Bhattacharya Sudin

机构信息

Institute for Quantitative Health Science & Engineering, East Lansing, MI, 48824, USA.

Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA.

出版信息

Curr Opin Toxicol. 2024 Jun;38. doi: 10.1016/j.cotox.2024.100475. Epub 2024 Mar 29.

Abstract

The application and analysis of single-cell transcriptomics in toxicology presents unique challenges. These include identifying cell sub-populations sensitive to perturbation; interpreting dynamic shifts in cell type proportions in response to chemical exposures; and performing differential expression analysis in dose-response studies spanning multiple treatment conditions. This review examines these challenges while presenting best practices for critical single cell analysis tasks. This covers areas such as cell type identification; analysis of differential cell type abundance; differential gene expression; and cellular trajectories. Towards enhancing the use of single-cell transcriptomics in toxicology, this review aims to address key challenges in this field and offer practical analytical solutions. Overall, applying appropriate bioinformatic techniques to single-cell transcriptomic data can yield valuable insights into cellular responses to toxic exposures.

摘要

单细胞转录组学在毒理学中的应用与分析面临着独特的挑战。这些挑战包括识别对扰动敏感的细胞亚群;解释化学暴露后细胞类型比例的动态变化;以及在跨越多种处理条件的剂量反应研究中进行差异表达分析。本综述在探讨这些挑战的同时,还介绍了关键单细胞分析任务的最佳实践。这涵盖了细胞类型识别、差异细胞类型丰度分析、差异基因表达分析以及细胞轨迹分析等领域。为了加强单细胞转录组学在毒理学中的应用,本综述旨在解决该领域的关键挑战并提供实用的分析解决方案。总体而言,将适当的生物信息学技术应用于单细胞转录组数据能够为细胞对毒性暴露的反应提供有价值的见解。

相似文献

5
Computational solutions for spatial transcriptomics.空间转录组学的计算解决方案。
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.
8
Prospects and challenges of multi-omics data integration in toxicology.毒理学中多组学数据整合的前景与挑战。
Arch Toxicol. 2020 Feb;94(2):371-388. doi: 10.1007/s00204-020-02656-y. Epub 2020 Feb 8.
10
Computational single cell oncology: state of the art.计算单细胞肿瘤学:现状
Front Genet. 2023 Nov 8;14:1256991. doi: 10.3389/fgene.2023.1256991. eCollection 2023.

本文引用的文献

3
The dawn of spatial omics.空间组学的黎明。
Science. 2023 Aug 4;381(6657):eabq4964. doi: 10.1126/science.abq4964.
5
Gene regulatory network inference in the era of single-cell multi-omics.单细胞多组学时代的基因调控网络推断
Nat Rev Genet. 2023 Nov;24(11):739-754. doi: 10.1038/s41576-023-00618-5. Epub 2023 Jun 26.
6
An integrated cell atlas of the lung in health and disease.肺部健康与疾病的细胞整合图谱
Nat Med. 2023 Jun;29(6):1563-1577. doi: 10.1038/s41591-023-02327-2. Epub 2023 Jun 8.
7
Best practices for single-cell analysis across modalities.多模态单细胞分析的最佳实践。
Nat Rev Genet. 2023 Aug;24(8):550-572. doi: 10.1038/s41576-023-00586-w. Epub 2023 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验