Burlando Bruno, Milanese Marco, Giordano Giulia, Bonifacino Tiziana, Ravera Silvia, Blanchini Franco, Bonanno Giambattista
Department of Pharmacy, University of Genova, Genova, Italy.
Department of Industrial Engineering, University of Trento, Trento, Italy.
PLoS One. 2020 Dec 17;15(12):e0244234. doi: 10.1371/journal.pone.0244234. eCollection 2020.
Amyotrophic lateral sclerosis (ALS) is a poor-prognosis disease with puzzling pathogenesis and inconclusive treatments. We develop a mathematical model of ALS based on a system of interactive feedback loops, focusing on the mutant SOD1G93A mouse. Misfolded mutant SOD1 aggregates in motor neuron (MN) mitochondria and triggers a first loop characterized by oxidative phosphorylation impairment, AMP kinase over-activation, 6-phosphofructo-2-kinase (PFK3) rise, glucose metabolism shift from pentose phosphate pathway (PPP) to glycolysis, cell redox unbalance, and further worsening of mitochondrial dysfunction. Oxidative stress then triggers a second loop, involving the excitotoxic glutamatergic cascade, with cytosolic Ca2+ overload, increase of PFK3 expression, and further metabolic shift from PPP to glycolysis. Finally, cytosolic Ca2+ rise is also detrimental to mitochondria and oxidative phosphorylation, thus closing a third loop. These three loops are overlapped and positive (including an even number of inhibitory steps), hence they form a candidate multistationary (bistable) system. To describe the system dynamics, we model the interactions among the functional agents with differential equations. The system turns out to admit two stable equilibria: the healthy state, with high oxidative phosphorylation and preferential PPP, and the pathological state, with AMP kinase activation, PFK3 over expression, oxidative stress, excitotoxicity and MN degeneration. We demonstrate that the loop system is monotone: all functional agents consistently act toward the healthy or pathological condition, depending on low or high mutant SOD1 input. We also highlight that molecular interactions involving PFK3 are crucial, as their deletion disrupts the system's bistability leading to a single healthy equilibrium point. Hence, our mathematical model unveils that promising ALS management strategies should be targeted to mechanisms that keep low PFK3 expression and activity within MNs.
肌萎缩侧索硬化症(ALS)是一种预后不良的疾病,其发病机制令人困惑,治疗方法尚无定论。我们基于一个交互式反馈回路系统,建立了一个ALS数学模型,重点研究突变型SOD1G93A小鼠。错误折叠的突变型SOD1在运动神经元(MN)线粒体中聚集,并触发第一个回路,其特征为氧化磷酸化受损、AMP激酶过度激活、6-磷酸果糖-2-激酶(PFK3)升高、葡萄糖代谢从磷酸戊糖途径(PPP)转向糖酵解、细胞氧化还原失衡以及线粒体功能障碍进一步恶化。氧化应激随后触发第二个回路,涉及兴奋性毒性谷氨酸能级联反应,伴有胞质Ca2+过载、PFK3表达增加以及代谢从PPP进一步转向糖酵解。最后,胞质Ca2+升高对线粒体和氧化磷酸化也有害,从而形成第三个回路。这三个回路相互重叠且为正反馈(包括偶数个抑制步骤),因此它们形成了一个候选的多稳态(双稳态)系统。为了描述系统动态,我们用微分方程对功能因子之间的相互作用进行建模。该系统被证明有两个稳定平衡点:健康状态,具有高氧化磷酸化和优先的PPP;病理状态,具有AMP激酶激活、PFK3过表达、氧化应激、兴奋性毒性和MN退化。我们证明回路系统是单调的:所有功能因子根据突变型SOD1输入的低或高,始终朝着健康或病理状态发展。我们还强调涉及PFK3的分子相互作用至关重要,因为它们的缺失会破坏系统的双稳态,导致单一的健康平衡点。因此,我们的数学模型揭示,有前景的ALS管理策略应针对维持MNs内低PFK3表达和活性的机制。