Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Front Immunol. 2019 Aug 20;10:1927. doi: 10.3389/fimmu.2019.01927. eCollection 2019.
The molecular events leading to differentiation, development, and plasticity of lymphoid cells have been subject of intense research due to their key roles in multiple pathologies, such as lymphoproliferative disorders, tumor growth maintenance and chronic diseases. The emergent roles of lymphoid cells and the use of high-throughput technologies have led to an extensive accumulation of experimental data allowing the reconstruction of gene regulatory networks (GRN) by integrating biochemical signals provided by the microenvironment with transcriptional modules of lineage-specific genes. Computational modeling of GRN has been useful for the identification of molecular switches involved in lymphoid specification, prediction of microenvironment-dependent cell plasticity, and analyses of signaling events occurring downstream the activation of antigen recognition receptors. Among most common modeling strategies to analyze the dynamical behavior of GRN, discrete dynamic models are widely used for their capacity to capture molecular interactions when a limited knowledge of kinetic parameters is present. However, they are less powerful when modeling complex systems sensitive to biochemical gradients. To compensate it, discrete models may be transformed into regulatory networks that includes state variables and parameters varying within a continuous range. This approach is based on a system of differential equations dynamics with regulatory interactions described by fuzzy logic propositions. Here, we discuss the applicability of this method on modeling of development and plasticity processes of adaptive lymphocytes, and its potential implications in the study of pathological landscapes associated to chronic diseases.
由于淋巴样细胞在多种病理学中(如淋巴增生性疾病、肿瘤生长维持和慢性疾病)具有关键作用,因此,导致其分化、发育和可塑性的分子事件一直是深入研究的主题。淋巴样细胞的新兴作用和高通量技术的使用导致了大量实验数据的积累,从而可以通过整合微环境提供的生化信号与谱系特异性基因的转录模块,来重建基因调控网络(GRN)。GRN 的计算模型对于鉴定参与淋巴样细胞特异性的分子开关、预测微环境依赖性细胞可塑性以及分析抗原识别受体激活下游的信号事件都非常有用。在分析 GRN 动态行为的最常见建模策略中,离散动态模型因其在存在有限动力学参数知识的情况下能够捕获分子相互作用而被广泛使用。然而,当对敏感生化梯度的复杂系统进行建模时,它们的功能就不那么强大了。为了弥补这一点,可以将离散模型转换为包含状态变量和在连续范围内变化的参数的调节网络。这种方法基于具有由模糊逻辑命题描述的调节相互作用的微分方程动力学系统。在这里,我们讨论了这种方法在适应性淋巴细胞发育和可塑性过程建模中的适用性,以及它在研究与慢性疾病相关的病理景观中的潜在意义。