School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):693-8. doi: 10.1098/rstb.2009.0260.
Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution.
代谢创新促进了微生物辐射到地球上几乎每一个小生境环境中,并在地质时间尺度上改变了我们生活的星球。创新的一个显著例子是有氧光合作用的进化,它是缺氧地球逐渐转变为富含氧气的海洋和富含氧气的大气的前奏,能够支持复杂的多细胞生物。微生物创新对地球历史和关键事件时间的影响在皇家学会 B 版的其他近期主题特刊中已经得到了探讨(Cavalier-Smith 等人,2006 年;Bendall 等人,2008 年)。在本期特刊中,我们的撰稿人提供了关于单细胞真核生物中代谢创新和适应的及时历史。在真核生物中,多样化的代谢组合被分隔在多个膜结合的隔室(或细胞器)中。然而,由于途径重新靶向、细胞器退化或新的内共生关联,原生生物的代谢谱往往与经典的中间代谢教科书描述有很大的不同。这些差异在小生境适应或微生物群落的结构方面往往很重要。从其自身的角度来看,细胞器代谢的生化、细胞生物学和系统发生基因组学研究也具有更广泛的相关性。例如,在一些病原体中,特别是那些引起一些最严重的热带疾病的病原体,包括疟疾,不寻常的细胞器代谢为重要的新药物靶点提供了依据。此外,原生生物细胞器代谢的研究继续为我们对真核生物进化的理解提供关键的见解。