Suppr超能文献

真核单细胞生物细胞器代谢的进化。

The evolution of organellar metabolism in unicellular eukaryotes.

机构信息

School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):693-8. doi: 10.1098/rstb.2009.0260.

Abstract

Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution.

摘要

代谢创新促进了微生物辐射到地球上几乎每一个小生境环境中,并在地质时间尺度上改变了我们生活的星球。创新的一个显著例子是有氧光合作用的进化,它是缺氧地球逐渐转变为富含氧气的海洋和富含氧气的大气的前奏,能够支持复杂的多细胞生物。微生物创新对地球历史和关键事件时间的影响在皇家学会 B 版的其他近期主题特刊中已经得到了探讨(Cavalier-Smith 等人,2006 年;Bendall 等人,2008 年)。在本期特刊中,我们的撰稿人提供了关于单细胞真核生物中代谢创新和适应的及时历史。在真核生物中,多样化的代谢组合被分隔在多个膜结合的隔室(或细胞器)中。然而,由于途径重新靶向、细胞器退化或新的内共生关联,原生生物的代谢谱往往与经典的中间代谢教科书描述有很大的不同。这些差异在小生境适应或微生物群落的结构方面往往很重要。从其自身的角度来看,细胞器代谢的生化、细胞生物学和系统发生基因组学研究也具有更广泛的相关性。例如,在一些病原体中,特别是那些引起一些最严重的热带疾病的病原体,包括疟疾,不寻常的细胞器代谢为重要的新药物靶点提供了依据。此外,原生生物细胞器代谢的研究继续为我们对真核生物进化的理解提供关键的见解。

相似文献

1
The evolution of organellar metabolism in unicellular eukaryotes.真核单细胞生物细胞器代谢的进化。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):693-8. doi: 10.1098/rstb.2009.0260.
2
Rewiring and regulation of cross-compartmentalized metabolism in protists.原生生物中跨区隔代谢的重编和调控。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):831-45. doi: 10.1098/rstb.2009.0259.
5
Biogeochemistry of dihydrogen (H2).氢气(H₂)的生物地球化学
Met Ions Biol Syst. 2005;43:9-48. doi: 10.1201/9780824751999.ch2.
6
Evolution of cellular metabolism and the rise of a globally productive biosphere.细胞代谢的演化与具有全球生产力的生物圈的兴起。
Free Radic Biol Med. 2019 Aug 20;140:172-187. doi: 10.1016/j.freeradbiomed.2019.05.004. Epub 2019 May 11.
7
Mitochondrion-related organelles in eukaryotic protists.真核原生生物中的线粒体相关细胞器。
Annu Rev Microbiol. 2010;64:409-29. doi: 10.1146/annurev.micro.62.081307.162826.

本文引用的文献

1
Evolutionary origins of metabolic compartmentalization in eukaryotes.真核生物代谢区室化的进化起源。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):847-55. doi: 10.1098/rstb.2009.0252.
2
Rewiring and regulation of cross-compartmentalized metabolism in protists.原生生物中跨区隔代谢的重编和调控。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):831-45. doi: 10.1098/rstb.2009.0259.
3
Autophagy in unicellular eukaryotes.单细胞真核生物中的自噬作用。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):819-30. doi: 10.1098/rstb.2009.0237.
5
Organization and expression of organellar genomes.细胞器基因组的组织和表达。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):785-97. doi: 10.1098/rstb.2009.0250.
7
Peroxisome diversity and evolution.过氧化物酶体的多样性与进化。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):765-73. doi: 10.1098/rstb.2009.0240.
8
The evolution, metabolism and functions of the apicoplast.类质体的进化、代谢和功能。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):749-63. doi: 10.1098/rstb.2009.0273.
9
The endosymbiotic origin, diversification and fate of plastids.质体的内共生起源、多样化和命运。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48. doi: 10.1098/rstb.2009.0103.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验