Suppr超能文献

原生生物中跨区隔代谢的重编和调控。

Rewiring and regulation of cross-compartmentalized metabolism in protists.

机构信息

Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):831-45. doi: 10.1098/rstb.2009.0259.

Abstract

Plastid acquisition, endosymbiotic associations, lateral gene transfer, organelle degeneracy or even organelle loss influence metabolic capabilities in many different protists. Thus, metabolic diversity is sculpted through the gain of new metabolic functions and moderation or loss of pathways that are often essential in the majority of eukaryotes. What is perhaps less apparent to the casual observer is that the sub-compartmentalization of ubiquitous pathways has been repeatedly remodelled during eukaryotic evolution, and the textbook pictures of intermediary metabolism established for animals, yeast and plants are not conserved in many protists. Moreover, metabolic remodelling can strongly influence the regulatory mechanisms that control carbon flux through the major metabolic pathways. Here, we provide an overview of how core metabolism has been reorganized in various unicellular eukaryotes, focusing in particular on one near universal catabolic pathway (glycolysis) and one ancient anabolic pathway (isoprenoid biosynthesis). For the example of isoprenoid biosynthesis, the compartmentalization of this process in protists often appears to have been influenced by plastid acquisition and loss, whereas for glycolysis several unexpected modes of compartmentalization have emerged. Significantly, the example of trypanosomatid glycolysis illustrates nicely how mathematical modelling and systems biology can be used to uncover or understand novel modes of pathway regulation.

摘要

质体获取、内共生关联、侧向基因转移、细胞器退化甚至细胞器丢失都会影响许多不同原生生物的代谢能力。因此,代谢多样性是通过获得新的代谢功能以及调节或丧失在大多数真核生物中通常必不可少的途径来塑造的。对于普通观察者来说,不太明显的是,在真核生物进化过程中,普遍存在的途径的亚区室化已经被反复重塑,并且为动物、酵母和植物建立的中间代谢教科书中的图片在许多原生生物中并不保守。此外,代谢重塑会强烈影响控制主要代谢途径中碳通量的调节机制。在这里,我们概述了核心代谢在各种单细胞真核生物中是如何重新组织的,特别关注一种普遍存在的分解代谢途径(糖酵解)和一种古老的合成代谢途径(异戊二烯生物合成)。以异戊二烯生物合成为例,这个过程在原生生物中的区室化似乎常常受到质体获取和丢失的影响,而对于糖酵解,出现了几种意想不到的区室化模式。值得注意的是,锥虫糖酵解的例子很好地说明了数学建模和系统生物学如何用于发现或理解新的途径调节模式。

相似文献

1
Rewiring and regulation of cross-compartmentalized metabolism in protists.原生生物中跨区隔代谢的重编和调控。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):831-45. doi: 10.1098/rstb.2009.0259.
2
Endosymbiotic associations within protists.原生生物内的共生关系。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):699-712. doi: 10.1098/rstb.2009.0188.
3
The evolution of organellar metabolism in unicellular eukaryotes.真核单细胞生物细胞器代谢的进化。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):693-8. doi: 10.1098/rstb.2009.0260.
4
Evolutionary origins of metabolic compartmentalization in eukaryotes.真核生物代谢区室化的进化起源。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):847-55. doi: 10.1098/rstb.2009.0252.
9
Endosymbiotic origin and differential loss of eukaryotic genes.内共生起源和真核基因的差异丢失。
Nature. 2015 Aug 27;524(7566):427-32. doi: 10.1038/nature14963. Epub 2015 Aug 19.
10
The number, speed, and impact of plastid endosymbioses in eukaryotic evolution.真核生物进化中质体内共生的数量、速度和影响。
Annu Rev Plant Biol. 2013;64:583-607. doi: 10.1146/annurev-arplant-050312-120144. Epub 2013 Feb 28.

引用本文的文献

6
Identification of a multienzyme complex for glucose metabolism in living cells.活细胞中葡萄糖代谢多酶复合物的鉴定。
J Biol Chem. 2017 Jun 2;292(22):9191-9203. doi: 10.1074/jbc.M117.783050. Epub 2017 Apr 19.

本文引用的文献

1
Evolutionary origins of metabolic compartmentalization in eukaryotes.真核生物代谢区室化的进化起源。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):847-55. doi: 10.1098/rstb.2009.0252.
2
Autophagy in unicellular eukaryotes.单细胞真核生物中的自噬作用。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):819-30. doi: 10.1098/rstb.2009.0237.
3
Peroxisome diversity and evolution.过氧化物酶体的多样性与进化。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):765-73. doi: 10.1098/rstb.2009.0240.
4
The endosymbiotic origin, diversification and fate of plastids.质体的内共生起源、多样化和命运。
Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48. doi: 10.1098/rstb.2009.0103.
6
Function and biogenesis of iron-sulphur proteins.铁硫蛋白的功能与生物合成
Nature. 2009 Aug 13;460(7257):831-8. doi: 10.1038/nature08301.
10
Evolution: revisiting the root of the eukaryote tree.进化:重新审视真核生物树的根源
Curr Biol. 2009 Feb 24;19(4):R165-7. doi: 10.1016/j.cub.2008.12.032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验