Suppr超能文献

A physiologically-inspired model of numerical classification based on graded stimulus coding.

作者信息

Pearson John, Roitman J D, Brannon E M, Platt M L, Raghavachari Sridhar

机构信息

Department of Neurobiology, Duke University School of Medicine Durham, NC, USA.

出版信息

Front Behav Neurosci. 2010 Jan 27;4:1. doi: 10.3389/neuro.08.001.2010. eCollection 2010.

Abstract

In most natural decision contexts, the process of selecting among competing actions takes place in the presence of informative, but potentially ambiguous, stimuli. Decisions about magnitudes - quantities like time, length, and brightness that are linearly ordered - constitute an important subclass of such decisions. It has long been known that perceptual judgments about such quantities obey Weber's Law, wherein the just-noticeable difference in a magnitude is proportional to the magnitude itself. Current physiologically inspired models of numerical classification assume discriminations are made via a labeled line code of neurons selectively tuned for numerosity, a pattern observed in the firing rates of neurons in the ventral intraparietal area (VIP) of the macaque. By contrast, neurons in the contiguous lateral intraparietal area (LIP) signal numerosity in a graded fashion, suggesting the possibility that numerical classification could be achieved in the absence of neurons tuned for number. Here, we consider the performance of a decision model based on this analog coding scheme in a paradigmatic discrimination task - numerosity bisection. We demonstrate that a basic two-neuron classifier model, derived from experimentally measured monotonic responses of LIP neurons, is sufficient to reproduce the numerosity bisection behavior of monkeys, and that the threshold of the classifier can be set by reward maximization via a simple learning rule. In addition, our model predicts deviations from Weber Law scaling of choice behavior at high numerosity. Together, these results suggest both a generic neuronal framework for magnitude-based decisions and a role for reward contingency in the classification of such stimuli.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e53b/2814553/827d2732d29c/fnbeh-04-001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验