Suppr超能文献

基于人群的基因特征可预测乳腺癌的生存和化疗反应。

A population-based gene signature is predictive of breast cancer survival and chemoresponse.

机构信息

Mary Babb Randolph Cancer Center, Morgantown, WV 26506-9300, USA.

出版信息

Int J Oncol. 2010 Mar;36(3):607-16. doi: 10.3892/ijo_00000536.

Abstract

It remains a critical issue to improve the survival rate in patients with recurrent or metastatic breast cancer. This study sought to develop a prognostic scheme based on a 28-gene signature in a broad patient population, including those with advanced disease. Clinically annotated transcriptional profiles of 1,734 breast cancer patients were obtained to validate the 28-gene signature in prognostic categorization. The 28-gene signature generated significant patient stratification with regard to breast cancer disease-free survival (log-rank P<0.0001; n=1,337) and overall survival (log-rank P<0.0001; n=806) in Kaplan-Meier analyses. The gene expression signature provides refined prognosis of disease-free survival (log-rank P<0.006; Kaplan-Meier analysis) within each classic clinicopathologic factor-defined subgroup, including LN-, LN+, ER-, ER+ and tumor grade II. Furthermore, it was investigated whether this gene signature predicts chemoresponse to drugs commonly used to treat breast cancer. The mRNA expression levels of this gene signature in NCI-60 cell lines were used to predict chemoresponse to CMF, tamoxifen, paclitaxel, docetaxel, and doxorubicin (adriamycin). The 28-gene prognostic signature accurately (P<0.02) predicted chemotherapeutic response to the studied drugs. This study confirmed the prognostic applicability of the breast cancer gene signature in a broad clinical setting. This prognostic signature is also predictive of drug response in cancer cell lines.

摘要

提高复发性或转移性乳腺癌患者的生存率仍然是一个关键问题。本研究旨在为广泛的患者群体(包括晚期疾病患者)开发一种基于 28 个基因特征的预后方案。临床注释的 1734 名乳腺癌患者转录谱用于验证 28 个基因特征在预后分类中的作用。在 Kaplan-Meier 分析中,28 个基因特征在乳腺癌无病生存(对数秩 P<0.0001;n=1337)和总生存(对数秩 P<0.0001;n=806)方面产生了显著的患者分层。基因表达特征在每个经典临床病理因素定义的亚组内提供了更精细的无病生存预后(对数秩 P<0.006;Kaplan-Meier 分析),包括 LN-、LN+、ER-、ER+和肿瘤分级 II。此外,还研究了该基因特征是否可以预测常用于治疗乳腺癌的药物的化疗反应。NCI-60 细胞系中该基因特征的 mRNA 表达水平用于预测 CMF、他莫昔芬、紫杉醇、多西他赛和阿霉素(多柔比星)的化疗反应。28 个基因预后特征准确(P<0.02)预测了研究药物的化疗反应。本研究在广泛的临床环境中证实了乳腺癌基因特征的预后适用性。该预后特征也可预测癌细胞系中的药物反应。

相似文献

2
Integrated gene expression profile predicts prognosis of breast cancer patients.综合基因表达谱可预测乳腺癌患者的预后。
Breast Cancer Res Treat. 2009 Jan;113(2):231-7. doi: 10.1007/s10549-008-9925-4. Epub 2008 Feb 16.

引用本文的文献

6
Prediction of chemo-response in serous ovarian cancer.浆液性卵巢癌化疗反应的预测
Mol Cancer. 2016 Oct 19;15(1):66. doi: 10.1186/s12943-016-0548-9.

本文引用的文献

2
The cancer biomarker problem.癌症生物标志物问题。
Nature. 2008 Apr 3;452(7187):548-52. doi: 10.1038/nature06913.
8
REporting recommendations for tumor MARKer prognostic studies (REMARK).肿瘤标志物预后研究报告建议(REMARK)。
Breast Cancer Res Treat. 2006 Nov;100(2):229-35. doi: 10.1007/s10549-006-9242-8. Epub 2006 Aug 24.
10
Predicting cancer drug response by proteomic profiling.通过蛋白质组学分析预测癌症药物反应。
Clin Cancer Res. 2006 Aug 1;12(15):4583-9. doi: 10.1158/1078-0432.CCR-06-0290.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验