Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA.
BMC Med Genomics. 2012 Dec 14;5:63. doi: 10.1186/1755-8794-5-63.
We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis.
The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions.
The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression.
We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients.
我们探讨了应用新的比例风险模型来分析乳腺癌患者生存情况的优势。作为一种参数模型,超余风险模型比 Cox 回归更能贴合实验数据,并且提供了明确的生存和风险函数,可作为生存分析中的附加工具。此外,我们主要关注的问题之一是利用多个基因表达变量。我们的分析在生存分析中考虑了不同基因特征相互作用的重要问题。
我们将超余比例风险模型应用于乳腺癌患者的生存分析。使用拟合优度的统计指标,将该模型与基于半参数 Cox 比例风险模型和参数对数逻辑和 Weibull 模型的模型进行比较。然后,使用明确的风险和生存函数来分析风险和生存函数的动态行为。
在所有考虑的模型中,超余模型提供了最佳拟合。与仅使用一个基因表达变量相比,使用多个基因表达变量也显著提高了模型的拟合优度。通过利用模型提供的明确生存和风险函数,我们能够确定风险最大增长率和生存最大下降率的大小,以及发生这些情况的时间。我们探讨了每个基因表达变量对这些极值的影响。此外,对于由相关度量表示的连续基因表达变量,我们能够研究基因表达变化方面的动态。
我们观察到,在模型中使用三个不同的基因特征提供了更大的综合效应,并使我们能够评估每个基因特征在确定该数据集结果方面的相对重要性。这些结果表明,在每个基因特征代表癌症生物学某些不同方面的情况下,将基因特征结合起来可能会产生更大的效果。此外,我们得出结论,超余生存模型可以成为乳腺癌患者的有效生存分析工具。