Suppr超能文献

一种预测乳腺癌在独立数据集中生存率的基因表达特征。

A gene-expression signature to predict survival in breast cancer across independent data sets.

作者信息

Naderi A, Teschendorff A E, Barbosa-Morais N L, Pinder S E, Green A R, Powe D G, Robertson J F R, Aparicio S, Ellis I O, Brenton J D, Caldas C

机构信息

Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Center, University of Cambridge, Cambridge, UK.

出版信息

Oncogene. 2007 Mar 1;26(10):1507-16. doi: 10.1038/sj.onc.1209920. Epub 2006 Aug 28.

Abstract

Prognostic signatures in breast cancer derived from microarray expression profiling have been reported by two independent groups. These signatures, however, have not been validated in external studies, making clinical application problematic. We performed microarray expression profiling of 135 early-stage tumors, from a cohort representative of the demographics of breast cancer. Using a recently proposed semisupervised method, we identified a prognostic signature of 70 genes that significantly correlated with survival (hazard ratio (HR): 5.97, 95% confidence interval: 3.0-11.9, P = 2.7e-07). In multivariate analysis, the signature performed independently of other standard prognostic classifiers such as the Nottingham Prognostic Index and the 'Adjuvant!' software. Using two different prognostic classification schemes and measures, nearest centroid (HR) and risk ordering (D-index), the 70-gene classifier was also found to be prognostic in two independent external data sets. Overall, the 70-gene set was prognostic in our study and the two external studies which collectively include 715 patients. In contrast, we found that the two previously described prognostic gene sets performed less optimally in external validation. Finally, a common prognostic module of 29 genes that associated with survival in both our cohort and the two external data sets was identified. In spite of these results, further studies that profile larger cohorts using a single microarray platform, will be needed before prospective clinical use of molecular classifiers can be contemplated.

摘要

两个独立的研究小组报告了从微阵列表达谱中得出的乳腺癌预后特征。然而,这些特征尚未在外部研究中得到验证,这使得其临床应用存在问题。我们对135例早期肿瘤进行了微阵列表达谱分析,这些肿瘤来自一个代表乳腺癌人群统计学特征的队列。使用最近提出的半监督方法,我们确定了一个由70个基因组成的预后特征,该特征与生存率显著相关(风险比(HR):5.97,95%置信区间:3.0 - 11.9,P = 2.7e - 07)。在多变量分析中,该特征独立于其他标准预后分类器,如诺丁汉预后指数和“辅助治疗!”软件。使用两种不同的预后分类方案和测量方法,最近邻质心(HR)和风险排序(D指数),还发现这70个基因的分类器在两个独立的外部数据集中具有预后价值。总体而言,在我们的研究以及总共包括715例患者的两项外部研究中,这70个基因的集合都具有预后价值。相比之下我们发现,之前描述的两个预后基因集在外部验证中的表现不太理想。最后,确定了一个由29个基因组成的共同预后模块,该模块在我们的队列以及两个外部数据集中均与生存率相关。尽管有这些结果,但在考虑将分子分类器用于前瞻性临床应用之前,还需要进一步使用单个微阵列平台对更大的队列进行分析研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验