Department of Occupational and Environmental Health, University of Iowa, College of Public Health, Iowa City, Iowa 52242, USA.
Environ Int. 2010 Nov;36(8):950-61. doi: 10.1016/j.envint.2009.12.004. Epub 2010 Feb 4.
4-Monochlorobiphenyl (PCB3) is readily converted by xenobiotic-metabolizing enzymes to dihydroxy-metabolites and quinones. The PCB3 hydroquinone (PCB3-HQ; 2-(4'-chlorophenyl)-1,4-hydroquinone) induces chromosome loss in Chinese Hamster V79 cells, whereas the para-quinone (PCB3-pQ; 2-(4'-chlorophenyl)-1,4-benzoquinone) very efficiently induces gene mutations and chromosome breaks. Apparently, each of these two metabolites, which are a redox pair, has a different spectrum of genotoxic effects due to different, metabolite-specific mechanisms. We hypothesized that the HQ requires enzymatic activation by peroxidases with the formation of reactive oxygen species (ROS) as the ultimate genotoxin, whereas the pQ reacts directly with nucleophilic sites in DNA and/or proteins. To examine this hypothesis, we employed two cell lines with different myeloperoxidase (MPO) activities, MPO-rich HL-60 and MPO-deficient Jurkat cells, and measured cytotoxicity, DNA damage (COMET assay), MPO activity, intracellular levels of reactive oxygen species (ROS) and intracellular free -SH groups (monochlorobimane assay, MCB) and free GSH contents (enzyme recycling method) after treatment with PCB3-HQ and PCB3-pQ. We also examined the modulation of these effects by normal/low temperature, pre-treatment with an MPO inhibitor (succinylacetone, SA), or GSH depletion. PCB3-p-Q increased intracellular ROS levels and induced DNA damage in both HL-60 and Jurkat cells at 37°C and 6°C, indicating a direct, MPO-independent mode of activity. It also strongly reduced intracellular free -SH groups and GSH levels in normal and GSH-depleted cells. Thus the ROS increase could be caused by reduced protection by GSH or non-enzymatic autoxidation of the resulting PCB3-HQ-GSH adduct. PCB3-HQ did not produce a significant reduction of intracellular GSH in HL-60 cells and reduced intracellular free -SH groups only at the highest concentration tested in GSH depleted cells. Moreover, PCB3-HQ induced DNA damage and ROS production only at 37 °C in HL-60 cells, not at 6 °C or in Jurkat cells at either temperature; no significant DNA damage and ROS production was observed in HL-60 cells at 37 °C if MPO activity was inhibited by SA. These studies show that the effects of PCB3-HQ are enzyme dependent, i.e. PCB3-HQ is oxidized by MPO in HL-60 cells with the generation of ROS and induction of DNA damage. However, this is not the case with the PCB3-pQ, which may produce DNA damage by the reactivity of the quinone with the DNA or nuclear proteins, or possibly by indirectly increasing intracellular ROS levels by GSH depletion. These different modes of action explain not only the different types of genotoxicity observed previously, but also suggest different organ specificity of these genotoxins.
4- 一氯联苯(PCB3)很容易被外源代谢酶转化为二羟基代谢物和醌。PCB3 对苯二酚(PCB3-HQ;2-(4'- 氯苯基)-1,4-对苯二酚)诱导中国仓鼠 V79 细胞染色体丢失,而对醌(PCB3-pQ;2-(4'- 氯苯基)-1,4-苯醌)则非常有效地诱导基因突变和染色体断裂。显然,这两种代谢物(氧化还原对)中的每一种由于不同的、代谢物特异性的机制,都具有不同的遗传毒性作用谱。我们假设 HQ 需要过氧化物酶的酶促激活,形成活性氧物种(ROS)作为最终的遗传毒素,而 pQ 则直接与 DNA 和/或蛋白质中的亲核位点反应。为了检验这一假设,我们使用了两种髓过氧化物酶(MPO)活性不同的细胞系,MPO 丰富的 HL-60 和 MPO 缺乏的 Jurkat 细胞,并测量了细胞毒性、DNA 损伤(彗星试验)、MPO 活性、细胞内活性氧水平(MCB 中单氯双马来酰亚胺试验)和细胞内游离 -SH 基团(酶循环法)在 PCB3-HQ 和 PCB3-pQ 处理后。我们还研究了正常/低温、MPO 抑制剂(丁二酮肟,SA)预处理或 GSH 耗竭对这些效应的调节。PCB3-p-Q 在 37°C 和 6°C 下均增加了 HL-60 和 Jurkat 细胞内的 ROS 水平并诱导 DNA 损伤,表明其具有直接的、与 MPO 无关的活性模式。它还强烈降低了正常和 GSH 耗竭细胞中细胞内游离 -SH 基团和 GSH 水平。因此,ROS 的增加可能是由于 GSH 保护减少或由此产生的 PCB3-HQ-GSH 加合物的非酶自动氧化所致。PCB3-HQ 并未在 HL-60 细胞中显著降低细胞内 GSH,并且仅在 GSH 耗竭细胞中测试的最高浓度下降低细胞内游离 -SH 基团。此外,PCB3-HQ 仅在 HL-60 细胞中在 37°C 时诱导 DNA 损伤和 ROS 产生,而在 6°C 或在任何温度下的 Jurkat 细胞中均不诱导;如果 MPO 活性被 SA 抑制,HL-60 细胞在 37°C 时不会观察到明显的 DNA 损伤和 ROS 产生。这些研究表明,PCB3-HQ 的作用是酶依赖性的,即 PCB3-HQ 在 HL-60 细胞中被 MPO 氧化,生成 ROS 并诱导 DNA 损伤。然而,这不适用于 PCB3-pQ,它可能通过醌与 DNA 或核蛋白的反应性或通过 GSH 耗竭间接增加细胞内 ROS 水平来产生 DNA 损伤。这些不同的作用模式不仅解释了先前观察到的不同类型的遗传毒性,还提示了这些遗传毒素的不同器官特异性。